<div class="csl-bib-body">
<div class="csl-entry">Schlemmer, F. (2025). <i>Using Modern Equivariant Machine Learning Architectures as Effective Hamiltonians for Monte Carlo Simulations of Quantum Spin Systems</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.135662</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.135662
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219409
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Monte Carlo methods play a fundamental role in the numerical simulation of physical systems, particularly in statistical mechanics, quantum mechanics, and condensed matter physics. This study explores various Monte Carlo techniques and their application to different Hamiltonians, with a focus on the Ising model, the Ising-like plaquette model, and the Double Exchange model. A key objective is to compare different update strategies, including local Metropolis updates, global Wolff cluster updates, and Self Learning Monte Carlo (SLMC) updates. After demonstrating the effectiveness of SLMC using a proof-of-concept study of the Ising-like plaquette model, it is shown that SLMC in combination with network-based effective Hamiltonians can improve the simulation efficiency of complex quantum spin systems significantly. Future work might focus on extending the presented formalism to more complex systems such as the SU(3) symmetry group of QCD.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Monte Carlo method
de
dc.subject
statistical mechanics
de
dc.subject
quantum spin systems
de
dc.subject
machine learning
de
dc.subject
Monte Carlo simulations
en
dc.title
Using Modern Equivariant Machine Learning Architectures as Effective Hamiltonians for Monte Carlo Simulations of Quantum Spin Systems
en
dc.title.alternative
Verwendung moderner äquivarianter Machine-Learning-Architekturen als effektive Hamiltonoperatoren für Monte-Carlo-Simulationen von Quantenspinsystemen