<div class="csl-bib-body">
<div class="csl-entry">Zimmer, A. (2025). <i>Optimal Investment and Dispatch of District Heating Technologies with Participation in Electricity Day-Ahead, Intraday, and Balancing Markets</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.126090</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.126090
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219629
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis studies the cost–optimal operation and expansion of a district heating portfolio under electricity–market uncertainty. A two–stage stochastic optimization model with hourly resolution over the planning horizon 2025–2035 is developed to assess the role of power-to-heat technologies-electric boilers (EB) and heat pumps (HP)-when participating in the day-ahead (DA), intraday (ID), and balancing markets. The technology set comprises HP, EB, combined heat and power (CHP), geothermal (GT), solar thermal (ST), waste-to-energy (WtE), and tank thermal energy storage (TTES).Market uncertainty is represented by an exogenous-input autoregressive model (AR-X) that generates price scenarios conditional on wind and photovoltaic feed-in. Five discrete levels ”trajectories” (low, lower, base, higher, high) are constructed for each market; their Cartesian product yields 25 joint DA/ID price scenarios. First-stage decisions determine investments and capacities; second-stage problems optimize hourly dispatch scenario-wise. To manage downside risk, the objective augments expected cost with a Conditional Value-at-Risk (CVaR) term, enabling a tunable trade-off between mean performance and tail losses. Key findings are threefold. First, explicit access to ID and reserve provision (mFRR-down capacity reservation only; physical activation is not modeled) enables more opportunistic electrification, shifting HP operation into low-price hours and monetizing EB’s flexibility. Second, the optimal portfolio exhibits a robust two-block structure: WtE provides dependable baseload, while HP/EB coordinated by TTES supply the flexible share. Third, in a stylized case study calibrated to an existing physical district heating network in Salzburg, the stochastic approach can reduce total system costs relative to a deterministic baseline by ≈ 9%, illustrating the value of scenario-based market participation and risk-aware planning.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
District Heating
en
dc.subject
Optimization
en
dc.subject
Electricity Markets
en
dc.subject
Day-Ahead
en
dc.subject
Intraday
en
dc.subject
Balancing Markets
en
dc.title
Optimal Investment and Dispatch of District Heating Technologies with Participation in Electricity Day-Ahead, Intraday, and Balancing Markets
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.126090
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Andreas Zimmer
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Zwickl-Bernhard, Sebastian
-
tuw.publication.orgunit
E370 - Institut für Energiesysteme und Elektrische Antriebe