<div class="csl-bib-body">
<div class="csl-entry">Ortiz, A. (2025). Learning and forgetting for server selection in Mobile Edge Computing: a perspective. <i>Elektrotechnik Und Informationstechnik : E & i</i>, <i>142</i>, 216–220. https://doi.org/10.34726/11099</div>
</div>
-
dc.identifier.issn
0932-383X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219947
-
dc.identifier.uri
https://doi.org/10.34726/11099
-
dc.description.abstract
Mobile Edge Computing (MEC) is an architecture that brings computational capabilities to the edge of mobile networks. It enables low-latency and efficient task execution by allowing the Mobile Units (MU) to offload computation tasks to nearby computing servers. However, server selection in MEC remains an open and complex challenge due to the non-stationary nature of the system dynamics, where channel conditions, server loads, and resource availability change over time. Traditional reinforcement learning approaches, while effective for adaptive decision-making, often assume stationary system dynamics. In this perspective, we discuss the role of learning and forgetting mechanisms in MEC server selection, emphasizing the need for adaptive mechanisms that can retain and exploit relevant experience while discarding outdated information.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.publisher
Springer Wien
-
dc.relation.ispartof
Elektrotechnik und Informationstechnik : e & i
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Mobile Edge Computing
en
dc.subject
Non-stationary systems
en
dc.subject
Reinforcement learning
en
dc.subject
Server selection
en
dc.title
Learning and forgetting for server selection in Mobile Edge Computing: a perspective