<div class="csl-bib-body">
<div class="csl-entry">Ishikawa, M. (2025). <i>Joint Functional Calculus for Definitizable Tuples of Self-Adjoint Krein Space Operators</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.135381</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.135381
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220027
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
The indefiniteness of Krein spaces gives rise to substantial complications. For instance, bounded self-adjoint linear Krein space operators are not well-behaved enough to allow for an appropriate analogue of the Spectral Theorem. To overcome this, classical literature imposes the additional assumption of definitizability. In the present work, we extend the notion of definitizability to tuples of pairwise commuting bounded self-adjoint operators and formulate the Spectral Theorem, expressed as a joint functional calculus, for definitizable tuples of Krein space operators. The definitizability of a tuple is a significantly weaker assumption than requiring each operator in the tuple to be definitizable. The constructed functional calculus will produce the zero operator if applied to a function that vanishes on the joint spectrum of the respective operator tuple. Moreover, while the construction of the functional calculus is based on the choice of generators of the smallest ideal containing all definitizing polynomials of the respective operator tuple, it will be shown that the resulting functional calculus is not affected by that choice. Finally, the functional calculus will be compatible with the functional calculus of subtuples via the canonical projection.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Krein Space
en
dc.subject
Definitizable Operators
en
dc.title
Joint Functional Calculus for Definitizable Tuples of Self-Adjoint Krein Space Operators
en
dc.title.alternative
Funktionalkalkül für definisierbare Tupel von selbstadjungierten Operatoren auf Kreinräumen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.135381
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Mario Ishikawa
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17671581
-
dc.description.numberOfPages
72
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
master thesis
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie