Daniilidis, A., Le, M. T., & Venegas, F. M. (2025). Absolutely minimal semi–Lipschitz extensions. Calculus of Variations and Partial Differential Equations, 64(9), Article 301. https://doi.org/10.1007/s00526-025-03169-1
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
Zeitschrift:
Calculus of Variations and Partial Differential Equations
-
ISSN:
0944-2669
-
Datum (veröffentlicht):
2025
-
Umfang:
25
-
Verlag:
SPRINGER HEIDELBERG
-
Peer Reviewed:
Ja
-
Keywords:
Lipschitz (Hölder) classes; Extensions; Maximum Principles; interpolation
en
Abstract:
The notion of quasi-metric space arises by revoking the symmetry from the definition of a distance. Semi-Lipschitz functions appear naturally as morphisms associated with the new structure. In this work, under suitable assumptions on the quasi-metric space (analogous to standard ones in the metric case), we establish existence of optimal (that is, absolutely minimal) extensions of real-valued semi-Lipschitz functions from a subset of the space to the whole space. This is done in two different ways: first, by adapting the Perron method from the classical setting to this asymmetric case, and second, by means of an iteration scheme for (an unbalanced version of) the tug-of-war game, initiating the algorithm from a McShane extension. This new iteration scheme provides, even in the symmetric case of a metric space, a constructive way of establishing existence of absolutely minimal Lipschitz extensions of real-valued Lipschitz functions.
en
Projekttitel:
Unilateralität und Asymmetrie in der Variationsanalyse: P 36344N (FWF - Österr. Wissenschaftsfonds)