<div class="csl-bib-body">
<div class="csl-entry">Kieseberg, P. P. (2025). <i>Data Leak Detection</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.137721</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.137721
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221152
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis provides several methods for tackling the problem of data leak detection in data driven environments, reflecting towards different side parameters and collaboration scenarios: In simple cases, data is sent from one owner to a limited number of recipients, thus making fingerprinting the technique of choice, in more complex cases, all participating partners might introduce information to a centralized database, where nontransparent algorithms will re-introduce their results to the data store or subsequent workflows. Furthermore, this thesis aims at providing protection against attackers as highly privileged as possible, often incorporating the database administrator as (primary) malicious user. The first contribution fuses together data anonymization and fingerprinting, providing fingerprints through selection of specific data anonymization strategies. This method allows for single-record based leak detectability, which is not featured by any other techniques currently in use. The second contribution allows for the detection of manipulation in database tables based on the intrinsic structure of the underlying B+-Trees, mathematically proofing detectability with respect to certain side parameters. Based on these results, data leak detection capabilities for various scenarios like dissemination in file form or encrypted databases are developed. Finally, the results regarding the structure of B+-Trees can also guarantee certain aspects of provable deletion in databases. The third contribution focuses on “expert-in-the-loop”-systems: In addition to providing manipulation security, this section provides two different approaches for the detection of data exfiltration through the SQL interface that are resilient against an attacker holding database administrator privileges.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Data Leak Detection
en
dc.subject
k-Anonymization
en
dc.subject
Fingerprinting
en
dc.subject
Watermarking
en
dc.subject
Database Fingerprinting
en
dc.subject
Data Protection
en
dc.subject
Privacy
en
dc.subject
AI Security
en
dc.title
Data Leak Detection
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.137721
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Peter Paul Kieseberg
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Holzinger, Andreas
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17700162
-
dc.description.numberOfPages
157
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
exstaff
-
tuw.assistant.orcid
0000-0002-6786-5194
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.cerifentitytype
Publications
-
item.openairetype
doctoral thesis
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing