<div class="csl-bib-body">
<div class="csl-entry">Tapia Garcia, S., Daniilidis, A., Garrido, M. I., & Jaramillo, J. (2025). Horofunction extension of metric spaces and Banach spaces. In Erwin Schrödinger Institut (Ed.), <i>Structures in Banach Spaces : Book of Abstracts</i> (pp. 9–9).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222773
-
dc.description
This is a joint work with A. Daniilidis, M.I. Garrido and J. Jaramillo
-
dc.description.abstract
In this talk we provide a necessary and sufficient condition for the horofunction extension of a metric space to be a compactification. The condition clarifies previous results on proper metric spaces and geodesic spaces and yields the following characterization: a Banach space is Gromov-compactifiable under any renorming if and only if it does not contain an isomorphic copy of ℓ1. In addition, it is shown that, up to an adequate renorming, every Banach space is Gromov-compactifiable. Therefore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz equivalence.
This is a joint work with A. Daniilidis, M.I. Garrido and J. Jaramill
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Metric space
en
dc.subject
Geodesic space
en
dc.subject
Horofunction extension
en
dc.subject
Banach space
en
dc.title
Horofunction extension of metric spaces and Banach spaces
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
9
-
dc.description.endpage
9
-
dc.relation.grantno
P 36344N
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Structures in Banach Spaces : Book of Abstracts
-
tuw.relation.publisherplace
Wien
-
tuw.project.title
Unilateralität und Asymmetrie in der Variationsanalyse
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0003-4837-694X
-
tuw.event.name
Structures in Banach Spaces 2025
en
dc.description.sponsorshipexternal
MICINN
-
dc.relation.grantnoexternal
PID2022-138758NB-I00
-
tuw.event.startdate
17-03-2025
-
tuw.event.enddate
21-03-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vienna
-
tuw.event.country
AT
-
tuw.event.institution
Erwin Schrödinger Institut
-
tuw.event.presenter
Tapia Garcia, Sebastian
-
tuw.event.track
Single Track
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
dc.contributor.editorgroup
Erwin Schrödinger Institut
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 36344N
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.orcid
0000-0003-4837-694X
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik