Tapia Garcia, S., Daniilidis, A., Garrido, M. I., & Jaramillo, J. (2025). Horofunction extension of metric spaces and Banach spaces. In Erwin Schrödinger Institut (Ed.), Structures in Banach Spaces : Book of Abstracts (pp. 9–9).
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
Published in:
Structures in Banach Spaces : Book of Abstracts
-
Date (published):
2025
-
Event name:
Structures in Banach Spaces 2025
en
Event date:
17-Mar-2025 - 21-Mar-2025
-
Event place:
Vienna, Austria
-
Number of Pages:
1
-
Keywords:
Metric space; Geodesic space; Horofunction extension; Banach space
en
Abstract:
In this talk we provide a necessary and sufficient condition for the horofunction extension of a metric space to be a compactification. The condition clarifies previous results on proper metric spaces and geodesic spaces and yields the following characterization: a Banach space is Gromov-compactifiable under any renorming if and only if it does not contain an isomorphic copy of ℓ1. In addition, it is shown that, up to an adequate renorming, every Banach space is Gromov-compactifiable. Therefore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz equivalence.
This is a joint work with A. Daniilidis, M.I. Garrido and J. Jaramill
en
Project title:
Unilateralität und Asymmetrie in der Variationsanalyse: P 36344N (FWF - Österr. Wissenschaftsfonds)
-
Project (external):
MICINN
-
Project ID:
PID2022-138758NB-I00
-
Additional information:
This is a joint work with A. Daniilidis, M.I. Garrido and J. Jaramillo