<div class="csl-bib-body">
<div class="csl-entry">Skuta, A. (2025). <i>Enabling Privacy-Preserving Machine Learning with Secure Multi-Party Computation</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.130251</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.130251
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224667
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
The adoption of machine learning in domains such as healthcare, biometrics and industrial automation raises concerns around data privacy. Secure Multi-Party Computation offers an interesting approach that enables privacy-preserving computation on sensitive data. This thesis investigates the practicality of SMPC-based machine learning inference, by evaluating SMPC frameworks, benchmarking neural network architectures and implementing two case studies.Firstly three SMPC frameworks were reviewed and compared. Based on this comparison Secretflow-SPU is selected for further experimentation due to its user-friendly support.Second, a systematic benchmark of three different neural network architectures is conducted, to show the inference overhead and the relationship between the number of parameters and layers that influences this overhead.Finally, two SMPC use cases are presented. One is a privacy-preserving face verification and the second is a secure energy prediction for industrial robots. Both case studies show that SMPC introduces a significant inference overhead, especially for face verification that requires a more larger models to perform well. But it also shows that using models that are optimized for resource-constrained devices benefits significantly in SMPC as well. In addition the effect of network conditions such as network delay and packet loss was examined as well.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Machine learning
de
dc.subject
Secure multi-party computation
de
dc.subject
Robotics
de
dc.subject
Computer vision
de
dc.subject
Machine learning
en
dc.subject
Secure multi-party computation
en
dc.subject
Robotics
en
dc.subject
Computer vision
en
dc.title
Enabling Privacy-Preserving Machine Learning with Secure Multi-Party Computation
en
dc.title.alternative
Privacy-Preserving Machine Learning mit Secure Multi-Party Computation
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.130251
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Adam Skuta
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17749897
-
dc.description.numberOfPages
55
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-9272-6225
-
item.cerifentitytype
Publications
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering