<div class="csl-bib-body">
<div class="csl-entry">Lederer, P. L. (2016). <i>Pressure robust discretizations for Navier Stokes equations : divergence-free reconstruction for Taylor-Hood elements and high order hybrid discontinuous Galerkin methods</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2016.36077</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2016.36077
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/2399
-
dc.description.abstract
This thesis focuses on a well-known issue of discretization techniques for solving the incompressible Navier Stokes equations. Due to a weak treatment of the incompressibility constraint there are different disadvantages that appear, which can have a major impact on the convergence and physical behaviour of the solutions. First we approximate the equations with a well-known pair of elements and introduce an operator that creates a reconstruction into a proper space to fix the mentioned problems. \newline Afterwards we use an H(div) conforming method that already handles the incompressibility constraint in a proper way. For a stable high order approximation an estimation for the saddlepoint structure of the Stokes equations is needed, known as the Ladyschenskaja-Babuska-Brezzi (LBB) condition. The independency of the estimation from the order of the polynomial degree is shown in this thesis. For that we introduce an H 2-stable extension that preserves polynomials. All operators and schemes are implemented based on the finite element library Netgen/NGSolve and tested with proper examples.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Navier Stokes
en
dc.subject
Discontinuous Galerkin
en
dc.subject
inf-sup condition
en
dc.subject
polynomial robust
en
dc.subject
divergence-free
en
dc.title
Pressure robust discretizations for Navier Stokes equations : divergence-free reconstruction for Taylor-Hood elements and high order hybrid discontinuous Galerkin methods
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2016.36077
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Philip Lukas Lederer
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC13100317
-
dc.description.numberOfPages
108
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-1959
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.author.orcid
0000-0003-1875-7442
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling