<div class="csl-bib-body">
<div class="csl-entry">Freiman, R. (2020). <i>Comparison and analysis of constructive set theories</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.66523</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2020.66523
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/3219
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description
Decomposed Zeichen konvertiert!
-
dc.description.abstract
Since the discovery of the Curry-Howard-correspondence we know of the deep-lying connections between computability and provability in intuitionistic logic. Hence, constructive mathematics, being based on intuitionistic logic, promises to be a fruitful tool in investigating the computational content of classical mathematics with potential applications in the areas of automated deduction and automated theorem proving. The objective of this thesis is to present and compare different approaches to constructive set theories in a comprehensible and self-contained fashion and thereby demonstrate its potential for applications in automated deduction and automated theorem proving. The particular significance placed here on set theory is due to its historically proven relevance in providing the very foundation of mathematics. The main theories discussed in the thesis are Brouwerian set theory, the axiomatic Zermelo-Fraenkel-style set theories IZF and CZF and Martin-Löfs set theory ML. In a first step, the theories and their axiomatizations are motivated from the constructive standpoint. Some basic results are inferred to get used to reasoning and limitations within the respective system. The broadest investigation, however, is conducted by means of metamathematical analysis. Metamathematical analysis of constructive Zermelo-Fraenkel set theories is executed by two semantical tools: Realizability and topological semantics. The former builds directly on notions from computability theory and thus allows for an investigation of metamathematical properties that are constructively de-sirable. A proof using topological semantics is presented to obtain an independence proof of the principle of decidable bar induction from a variant of Brouwers mathematics formalized within IZF. Finally, a meaning-persevering interpretation of CZF into ML a theory that is considered to give a constructively clear and well-justified notions of sets is discussed. This makes CZF not only especially well-suited for mathematical practice, but also vindicates its constructive nature and makes it a promising starting point for applications.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
constructivism
en
dc.subject
set theory
en
dc.subject
intuitionistic logic
en
dc.title
Comparison and analysis of constructive set theories
en
dc.title.alternative
Vergleich und Analyse konstruktiver Mengenlehren
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2020.66523
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Robert Freiman
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15546935
-
dc.description.numberOfPages
131
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-133343
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.author.orcid
0000-0001-8251-4272
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-2932-5477
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.orcid
0000-0001-8251-4272
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie