<div class="csl-bib-body">
<div class="csl-entry">Danczul, T. (2018). <i>A reduced basis method for fractional diffusion operators</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2018.56620</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2018.56620
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/3393
-
dc.description.abstract
in Englisch
de
dc.description.abstract
Several authors have proposed and analyzed numerical methods for fractional differential oper- ators, in particular Fourier Galerkin schemes and Caffarelli-Silvestre extensions. In this thesis we consider a different approach. By means of a reduced basis method, the desired operator is projected to a low dimensional space V r , where the fractional power can be directly evaluated via the eigen-system. The optimal choice of V r is provided by the so called Zolotarëv points, en- suring exponential convergence. Numerical experiments evaluating the operator and the inverse operator confirm the analysis. The time-dependent Fractional Cahn-Hilliard Equation (FCHE) is examined for further tests. By a splitting method, the non-linear operator is decoupled from the regular Laplacian, such that the linear parabolic equation is solved exactly on the low dimensional reduced space. Different choices of the fractional power s are discussed and tested.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Fractional Diffusion
en
dc.subject
Reduced Basis Method
en
dc.title
A reduced basis method for fractional diffusion operators
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2018.56620
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Tobias Danczul
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15070539
-
dc.description.numberOfPages
57
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-112880
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.author.orcid
0000-0003-1279-2087
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling