DC FieldValueLanguage
dc.contributor.authorAuricchio, Ferdinando-
dc.contributor.authorBalduzzi, Giuseppe-
dc.contributor.authorLovadina, Carlo-
dc.date.accessioned2020-06-27T16:11:44Z-
dc.date.issued2013-
dc.identifier.issn0020-7683-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:3-2985-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/348-
dc.descriptionThe final publication is available via <a href="https://doi.org/10.1016/j.ijsolstr.2013.08.022" target="_blank">https://doi.org/10.1016/j.ijsolstr.2013.08.022</a>.-
dc.description.abstractThis paper illustrates an application of the so-called dimensional reduction modelling approach to obtain a mixed, 3D, linear, elastic beam-model.<br />We start from the 3D linear elastic problem, formulated through the Hellinger–Reissner functional, then we introduce a cross-section piecewise-polynomial approximation, and finally we integrate within the cross section, obtaining a beam model that satisfies the cross-section equilibrium and could be applied to inhomogeneous bodies with also a non trivial geometries (such as L-shape cross section). Moreover the beam model can predict the local effects of both boundary displacement constraints and non homogeneous or concentrated boundary load distributions, usually not accurately captured by most of the popular beam models.<br />We modify the beam-model formulation in order to satisfy the axial compatibility (and without violating equilibrium within the cross section), then we introduce axis piecewise-polynomial approximation, and finally we integrate along the beam axis, obtaining a beam finite element. Also the beam finite elements have the capability to describe local effects of constraints and loads. Moreover, the proposed beam finite element describes the stress distribution inside the cross section with high accuracy.<br />In addition to the simplicity of the derivation procedure and the very satisfying numerical performances, both the beam model and the beam finite element can be refined arbitrarily, allowing to adapt the model accuracy to specific needs of practitioners.en
dc.languageEnglish-
dc.language.isoen-
dc.publisherElsevier-
dc.relation.ispartofInternational Journal of Solids and Structures-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.de-
dc.subjectlinear elastic beamen
dc.subjectmixed variational modellingen
dc.subjectbeam analytical solutionen
dc.subjectstatic analysisen
dc.subjectfinite elementen
dc.titleThe dimensional reduction modelling approach for 3D beams: Differential equations and finite-element solutions based on Hellinger–Reissner principleen
dc.typeArticleen
dc.typeArtikelde
dc.rights.holder2013 Elsevier-
dc.type.categoryResearch Articleen
dc.type.categoryForschungsartikelde
tuw.peerreviewedfalse-
tuw.versionsmur-
dcterms.isPartOf.titleInternational Journal of Solids and Structures-
tuw.publication.orgunitE202 - Institut für Mechanik der Werkstoffe und Strukturen-
tuw.publisher.doi10.1016/j.ijsolstr.2013.08.022-
dc.identifier.libraryidAC11362457-
dc.identifier.urnurn:nbn:at:at-ubtuw:3-2985-
dc.rights.identifierCC-BY-NC-ND 4.0-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.openairetypeArtikel-
item.grantfulltextopen-
item.openaccessfulltextOpen Access-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.fulltextwith Fulltext-
Appears in Collections:Article

Files in this item:


Page view(s)

84
checked on Sep 26, 2021

Download(s)

171
checked on Sep 26, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons