<div class="csl-bib-body">
<div class="csl-entry">Federico, P. (2017). <i>Visual analytics of dynamic networks</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2017.45965</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2017.45965
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/3791
-
dc.description.abstract
While there are many well-established techniques to analyze and visualize static social networks, visual analysis of dynamic (i.e., time-oriented) network data emerged in recent years as a relevant research topic, facing several open problems. The dynamic nature of this kind of data, indeed, poses the challenge of understanding both its relational aspect (the structure of social interactions) and its temporal aspect (how they change over time). In this doctoral work, we investigate how a visual analytics approach, integrating automatic analysis, visualization, and user interaction techniques, can support the examination of such dynamic networks. In particular, by focusing on this research problem, we present the following contributions: 1. we propose a set of novel metrics (change centrality metrics) to specifically analyse how the network structure changes over time; 2. we combine different visual encodings for the time-oriented aspect of network data, enabling smooth transformations between different views; 3. we introduce novel techniques for user interaction, such as interactive control of dynamic layout stability and the vertigo zoom, allowing seamless transitions between relational and temporal perspectives on dynamic network data. We illustrate our approach by describing a prototypical implementation and demonstrate its utility by introducing a real-world usage scenario. Furthermore, we provide a validation of our approach by reporting findings from expert reviews (involving experts from both the visualization community and the problem domain) as well as from two task-based user-studies, namely a qualitative evaluation and a quantitative controlled experiment. These findings afford an indication of the overall validity of our approach and allow us to discuss how particular techniques and their combinations can support specific analytical tasks on dynamic network data.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
visualisation
en
dc.subject
visual analytics
en
dc.subject
networks
en
dc.subject
graphs
en
dc.subject
dynamic
en
dc.subject
time
en
dc.title
Visual analytics of dynamic networks
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2017.45965
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Paolo Federico
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E188 - Institut für Softwaretechnik und Interaktive Systeme
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC13721050
-
dc.description.numberOfPages
177
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-99345
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-1830-0330
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-4427-5703
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology