Title: EMG-signal processing for neuro-excitability test using Matlab
Other Titles: Automatisierte EMG-Signalanalyse für Patienten mit nicht-dystrophen Myotonien zum Nachweis der Behandlung und dem Vergleich mit gesunden Probanden
Language: English
Authors: Riegler, Sara 
Qualification level: Diploma
Advisor: Kaniusas, Eugenijus  
Issue Date: 2017
Number of Pages: 89
Qualification level: Diploma
Introduction: Electromyography (EMG) is a standard practice in various felds such as prosthetics, rehabilitation, sport analysis or research. Due to its diversity of application, there is a high demand for individual signal processing solutions to the specic requirements. The task was to develop a semi-automatic signal processing interface in Matlab for different electromyographic tests, to validate its results by comparison with values in the literature and to apply it to control subject and patient data. The application was customized for the specic testing protocol comprising stimulation evoked as well as voluntary contractions and should give the user a general overview over the data. Methods: This thesis is based on an internship at the Myology Institute in Paris. The EMG signals of non-dystrophic myotonia patients as well as healthy control subjects were analysed. The signals were recorded during 6 different neuromuscular excitability tests (maximum M response, 5Hz stimulation, refractory, supernormality, maximum voluntary contraction, fatigue), using laplacian electrodes. Matlab was used for further analysis of the data. The signals were altered, their quality classifed and test specific parameters were calculated. The results were compared with already published results of the same dataset in order to gain information about validity. Results: All non signal-quality related processing steps were automatized and the quality classification decisions were guided by the developed program. All but one stimulation evoked control EMG file passed the signal quality assessment, whereas only 38% of the patients compound muscle action potential and 42% of the patients 5Hz tests were valid. The remaining poor quality signals were classified into 4 different error classes. Due to the combination of the patients poor quality CMAP and double stimulation recordings, neither the supernormality nor the refractory test could be processed. The control group results were all comparable with the literature and previous calculations. The patients force as well as root mean square and mean power frequency values were generally lower than those of the control group. Myotonia congenita and paramyotonia congenita patients tend to have different EMG behaviour but no general statements could be made due to small group numbers and mostly inconsistent results on the different days of examination. Conclusion: The application of the algorithms on healthy control data showed that it is generally possible to semi-automatically process EMG data. The adaptable user interfaces created for this testing protocol are applicable on any compound muscle action potential, 5Hz, refractory, supernormality, maximum voluntary contraction or fatigue recordings. However, basic requirements such as adequate signal quality and subgroup numbers still have to be fulfilled. For patient data, this might be especially diffcult as for some rare diseases it is simply not possible to obtain more participants or disease specific characteristics complicate the recording of EMG signals.
Keywords: EMG; nicht-dystrophe Myotonien
EMG; non-dystrophic myotonia
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-99400
Library ID: AC13725819
Organisation: E354 - Institute of Electrodynamics, Microwave and Circuit Engineering 
Publication Type: Thesis
Appears in Collections:Thesis

Files in this item:

Page view(s)

checked on Sep 17, 2021


checked on Sep 17, 2021

Google ScholarTM


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.