<div class="csl-bib-body">
<div class="csl-entry">Amann, N. D. (2018). <i>Confidence sets based on the adaptive Lasso estimator</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2018.46820</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2018.46820
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/5397
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis deals examines the adaptive LASSO estimator in the setting of moving parameter in the low-dimensional case, while the tuning parameters may vary over the components. The main part deals with the construction of asymptotic confidence sets based on the adaptive LASSO estimator in the case where at least one component of the tuning parameter is tuned to perform consistent model selection. The asymptotic distribution of the appropriately scaled and centered adaptive LASSO estimator is derived implicitly as the minimizer of a stochastic function, which is used to create confidence sets with asymptotically infimal coverage probability of 1. Besides confidence sets of the partially consistent tuned adaptive LASSO estimator, a condition on the tuning parameters is shown to be equivalent to consistency in parameter estimation. Conditions concerning the consistency in model selection are also derived. In particular, obtaining consistency in model selection for the adaptive LASSO estimator requires consistency in parameter estimation.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
model selection
en
dc.subject
inference
en
dc.subject
confidence set
en
dc.subject
/ Lasso
en
dc.title
Confidence sets based on the adaptive Lasso estimator
en
dc.title.alternative
Konfidenzmengen basierend auf dem adaptiven Lasso Schätzer
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2018.46820
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Nicolai David Amann
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15151643
-
dc.description.numberOfPages
30
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-115033
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik