<div class="csl-bib-body">
<div class="csl-entry">Jafari, N. (2017). <i>An empirical approach to risk modeling in brownfield regeneration</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2017.51484</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2017.51484
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/5750
-
dc.description.abstract
Over the last decade, regeneration of derelict and underused sites with varying degrees of contamination (also known as Brownfield sites) has gained popularity as a sustainable land use strategy. However, redevelopment of contaminated fields is a complex and multidimensional problem that entails many risks and uncertainties. The objective of this thesis is to construct, calibrate and validate a risk assessment model that can assist investors and decision-makers in evaluating and classifying brownfield sites to two categories : suitable for redevelopment / not suitable for redevelopment. The three-step model building process is adopted from the methodology of credit risk modeling used in banks and credit rating agencies. The proposed models utilize two machine learning algorithms, namely Classification And Regression Trees (CART), and Random Forest algorithms. The first part of the thesis provides a point of reference in browfield regeneration risk modeling and describes the current research gaps in this field. The following chapter describes the credit risk model building methodology. Finally, Chapter 4 describes the implementation of risk model building methodology in the field of brownfield risk modeling using programming language R. Appendix A includes the commented Rcode for interested readers and can serve as a guideline in implementing the Classification And Regression Tree, and Random Forest algorithms in various fields of study.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Risk Modeling
en
dc.subject
Brownfeld Regeneration
en
dc.title
An empirical approach to risk modeling in brownfield regeneration
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2017.51484
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Naghmeh Jafari
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E330 - Institut für Managementwissenschaften
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC14509187
-
dc.description.numberOfPages
80
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-105729
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairetype
Thesis
-
item.openairetype
Hochschulschrift
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften