Krupka, B. (2017). Einfluss der Federsteifigkeiten von Holzverbindungen im mehrgeschossigen Brettsperrholzbau unter Erdbebenlast [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2017.45504
Timber; Spring stiffness; wood joints; cross laminated timber; earthquake
en
Abstract:
In Fachvorträgen zum Themengebiet „Erdbebensicherer Holzbau“ entstehen immer wieder Diskussionen, mit welcher Erdbeben-Bemessungslast ein Tragwerk dimensioniert werden muss. Grund dafür sind die unbekannten Steifigkeits- und Dämpfungselemente in einem Bauwerk. Sie beeinflussen das dynamische Tragwerksverhalten enorm. Die folgende Arbeit befasst sich mit dem Thema „Einfluss der Federsteifigkeiten von Holzverbindungen unter Erdbebenlast“. Um das Thema etwas einzugrenzen, wurde speziell auf die Brettsperrholzbauweise eingegangen. Im theoretischen Teil der Arbeit werden die wesentlichen Merkmale „der Brettsperrholzbauweise, der Holzverbindungen und der Baudynamik“ beschrieben. Um komplexe Zusammenhänge in der Erdbebenberechnung von Bauwerken zu verstehen, wird dieses Thema sehr ausführlich mit eingebunden und normative Bemessungsregeln vorgestellt. In weiterer Folge wird speziell auf die Verbindungstechnik im Holzbau eingegangen. Es wird gezeigt, welche Holzverbindungen sich in der Brettsperrholzbauweise etabliert haben und wie diese berechnet werden. Ein Teil dieser Arbeit befasst sich mit den Verbindungsmittelkenndaten. Hierbei ist speziell die Arbeitslinie einer Verbindung gemeint. Im Zusammenhang mit einer dynamischen Berechnung haben diese Arbeitslinien – in der die Tragfähigkeit, die Steifigkeit und die Duktilität einer Verbindung herausgelesen werden können – Einfluss auf das Tragverhalten einer Gesamtkonstruktion. Da solche Verbindungsmittelkenndaten aus unterschiedlichen Quellen (z.B. aus einer normativen Berechnung, aus Modellversuchen, etc.) bezogen werden können, stellt sich die Frage, welche Kenndaten für eine dynamische Berechnung heranzuziehen sind. Durch Vergleiche von unterschiedlichen Quellen soll diese Frage beantwortet werden. Im praktischen Teil der Arbeit wird ein Tragwerk mit einer Finite-Elemente-Methode-Software (FEM-Software) modelliert. In diesem Zusammenhang ist es wichtig, die empfohlenen Verbindungsmittelkenndaten richtig zu modellieren. Gerade in der Baudynamik können Annahmen auf der „sicheren Seite“ zu erheblichen Fehlern bei den Berechnungsergebnissen führen. In weiterer Folge werden durch die Variation der Verbindungsmittel verschiedene Systemsteifigkeiten am Tragwerk erzielt. In diesem Abschnitt wird durch Fallstudien gezeigt, welchen Einfluss die Federsteifigkeiten der Holzverbindungen auf das Tragwerksverhalten unter Erdbebenlast haben. Eine zusätzliche Variation der Standorte bewirkt, dass der Einfluss der Federsteifigkeiten von Holzverbindungen auch bei unterschiedlichen Erdbebenintensitäten betrachtet werden kann. Daraus abgeleitet werden Verhaltensbeiwerte (q-Faktoren) – mit der die Erdbeben-Bemessungslast abgemindert werden darf – für verschiedene Situationen empfohlen.
de
Studies dealing with the topic of „earthquake resistant timber construction“ tend to circle back to the question of which seismic load should be used when designing a load-bearing structure. This uncertainty is the result of unknown sti.ness and damping elements in a given structure, which have a direct and profound e.ect on a structure’s dynamic load-bearing behavior. The following paper will examine „the role of di.erent wood joint spring sti.ness values under seismic load“, focusing specifically on cross-laminated timber. The theoretical part of this paper describes the significant features of „cross-laminated timber, wood joints, and structural dynamics“. This paper also examines the complex relationships that influence the calculation of earthquake forces on buildings and structures in detail, and will introduce normative design regulations. The next section focuses on joining technology in timber construction, and provides an overview of well-established wood joining techniques and associated calculations in cross-laminated timber manufacturing. A part of this paper also deals with the properties of fasteners, focusing in particular on their stress-strain relationships. The tensile strength, sti.ness, and ductility of a fastener can be determined from these stress-strain diagrams. Together with dynamic calculations they also play a key role in the load-bearing behavior of the entire structure. The fact that the data for these fastener properties can be taken from di.erent sources (e.g. from a normative calculation, from simulation tests, etc.), raises the question of which data should be used for dynamic calculations. This question can be answered by comparing di.erent sources. The empirical portion of this paper models a load-bearing structure using finite element method software (FEM Software). In this context, it is critical to model the recommended data for fastener properties correctly, because making assumptions to „be on the safe side“ can lead to significant errors in the calculation results, especially in structural dynamics. The variation between fasteners will be used to determine the e.ect of di.erent system sti.nesses on the load-bearing structure. In this section, case studies will be used to demonstrate the various ways in which the spring sti.ness of wood joints can a.ect the load-bearing behavior of structures under seismic load. Varying the location also allowed the e.ects of wood joint spring sti.ness to be observed under a range of seismic loading conditions. Based on these observations, this paper makes recommendations for behavior coefficients (q-factors) which would reduce the seismic load for di.erent situations.