Let Sg,n be a surface of genus g>1 with n>0 punctures equipped with a complete hyperbolic cusp metric. Then it can be uniquely realized as the boundary metric of an ideal Fuchsian polyhedron. In the present paper we give a new variational proof of this result. We also give an alternative proof of the existence and uniqueness of a hyperbolic polyhedral metric with prescribed curvature in a given conformal class.
en
dc.description.sponsorship
SNF
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Springer Nature
-
dc.relation.ispartof
Geometriae Dedicata
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Discrete curvature
en
dc.subject
Alexandrov theorem
en
dc.subject
Discrete conformality
en
dc.subject
Discrete uniformization
en
dc.title
Ideal polyhedral surfaces in Fuchsian manifolds
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.description.startpage
151
-
dc.description.endpage
179
-
dc.relation.grantno
Grant 200021−169391 Discrete curvature and rigidity
-
dc.rights.holder
The Author(s) 2019
-
dc.type.category
Original Research Article
-
tuw.container.volume
206
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Geometriae Dedicata
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
tuw.publisher.doi
10.1007/s10711-019-00480-y
-
dc.date.onlinefirst
2019-09-07
-
dc.identifier.eissn
1572-9168
-
dc.identifier.libraryid
AC15534585
-
dc.description.numberOfPages
29
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-7889
-
tuw.author.orcid
0000-0002-0002-8877
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie