Schimpf, M. (2018). String/Gauge theory duality, integrable systems and applications [Dissertation, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/78290
Wir berechnen Dispersionsrelationen in semiklassischen Näherungen der Stringtheorie, wie dem “near-flat-space” Limit, eine Näherung die zwischen dem “pp-wave” Limit und dem “giant magnon” Limit auf der Energieskala liegt. Wir berechnen das “near-flat-space” Limit von Stringtheorie in AdS4×CP3, die duale Theorie ist N =6 Chern-Simons Theorie. Wir erhalten den effektiven Lagrangian und den Hamilton Operator. Wir berechnen das Lax-Paar wodurch wir die Integrabilität auf klassischen Niveau zeigen. Wir erhalten Dispersionsrelationen für Giant Magnons und Single Spikes in TsT deformiertem AdS4×CP3 Hintergrund. Mittels der AdS/CFT Dualität berechnen wir 3-Punkt Korrelationsfunktionen für Operatoren die dual zu zwei “heavy string states” und einem Supergravitationsteilchen sind. Danach geben wir die dualen Operatoren in der Eichtheorie an. Schließlich beschäftigen wir uns mit Moonshine, einem florierendem Forschungsfeld, dass zwei unterschiedliche Gebiete der Mathematik, Gruppentheorie und die Theorie der Modularen Funktionen mittels Stingtheorie verknüpft.
de
We calculate dispersion relations in different semiclassical limits of string theory, like in the “near-flat-space” limit which is an interpolating limit between the pp-wave and the giant magnon limit. We calculate the “near-flat-space” limit of strings in AdS4× CP3 which is dual to two Chern-Simons theories at level k and -k . We obtain the effective Lagrangian and give the Hamiltonian. We calculate the Lax pair for this background which proves integrability at the classical level. Another semiclassical limit is the “giant magnon” limit. We calculate dispersion relations for giant magnons and single spikes in a TsT deformed AdS4× CP3 background. We calculate 3-point correlation functions using the AdS/CFT duality. We obtain correlation functions of operators corresponding to two heavy string states and one light supergravity field. We state the dual gauge theory operators. Finally, we turn to Moonshine, a prosperous new research field, which connects two different areas of mathematics: group theory and the theory of modular forms.