<div class="csl-bib-body">
<div class="csl-entry">Arleo, A., Didimo, W., Liotta, G., Miksch, S., & Montecchiani, F. (2022). Influence Maximization with Visual Analytics. <i>IEEE Transactions on Visualization and Computer Graphics</i>, <i>28</i>(10), 3428–3440. https://doi.org/10.1109/TVCG.2022.3190623</div>
</div>
-
dc.identifier.issn
1077-2626
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/80257
-
dc.description.abstract
In social networks, individuals' decisions are strongly influenced by recommendations from their friends, acquaintances, and favorite renowned personalities. The popularity of online social networking platforms makes them the prime venues to advertise products and promote opinions. The Influence Maximization (IM) problem entails selecting a seed set of users that maximizes the influence spread, i.e., the expected number of users positively influenced by a stochastic diffusion process triggered by the seeds. Engineering and analyzing IM algorithms remains a difficult and demanding task due to the NP-hardness of the problem and the stochastic nature of the diffusion processes. Despite several heuristics being introduced, they often fail in providing enough information on how the network topology affects the diffusion process, precious insights that could help researchers improve their seed set selection. In this paper, we present VAIM, a visual analytics system that supports users in analyzing, evaluating, and comparing information diffusion processes determined by different IM algorithms. Furthermore, VAIM provides useful insights that the analyst can use to modify the seed set of an IM algorithm, so to improve its influence spread. We assess our system by: (i) a qualitative evaluation based on a guided experiment with two domain experts on two different data sets; (ii) a quantitative estimation of the value of the proposed visualization through the ICE-T methodology by Wall (IEEE TVCG - 2018). The twofold assessment indicates that VAIM effectively supports our target users in the visual analysis of the performance of IM algorithms.
en
dc.language.iso
en
-
dc.publisher
Institute of Electrical and Electronics Engineers (IEEE)
-
dc.relation.ispartof
IEEE Transactions on Visualization and Computer Graphics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Information visualization
en
dc.subject
Visualization systems and software
en
dc.subject
Influence maximization
en
dc.subject
Visual analytics
en
dc.subject
Information diffusion
en
dc.title
Influence Maximization with Visual Analytics
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.pmid
35830402
-
dc.contributor.affiliation
University of Perugia, Italy
-
dc.contributor.affiliation
University of Perugia, Italy
-
dc.contributor.affiliation
University of Perugia, Italy
-
dc.description.startpage
3428
-
dc.description.endpage
3440
-
dcterms.dateSubmitted
2022-04-04
-
dc.type.category
Original Research Article
-
tuw.container.volume
28
-
tuw.container.issue
10
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/EngAAlex/VAIM
-
dcterms.isPartOf.title
IEEE Transactions on Visualization and Computer Graphics
-
tuw.publication.orgunit
E193-07 - Forschungsbereich Visual Analytics
-
tuw.publisher.doi
10.1109/TVCG.2022.3190623
-
dc.date.onlinefirst
2022-07-13
-
dc.identifier.eissn
1941-0506
-
dc.identifier.libraryid
AC17205118
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0003-2008-3651
-
tuw.author.orcid
0000-0002-4379-6059
-
tuw.author.orcid
0000-0002-2886-9694
-
tuw.author.orcid
0000-0003-4427-5703
-
tuw.author.orcid
0000-0002-0543-8912
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
dc.description.sponsorshipexternal
MIUR
-
dc.description.sponsorshipexternal
University of Perugia
-
dc.description.sponsorshipexternal
University of Perugia
-
dc.relation.grantnoexternal
20174LF3T8
-
dc.relation.grantnoexternal
RICBA19FM
-
dc.relation.grantnoexternal
RICBA20ED
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
item.openairetype
research article
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
mixedopen
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.dept
University of Perugia
-
crisitem.author.dept
University of Perugia
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.dept
University of Perugia
-
crisitem.author.orcid
0000-0003-2008-3651
-
crisitem.author.orcid
0000-0002-4379-6059
-
crisitem.author.orcid
0000-0002-2886-9694
-
crisitem.author.orcid
0000-0003-4427-5703
-
crisitem.author.orcid
0000-0002-0543-8912
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology