Reisinger, J. (2022). Parametric optimization and decision support framework for the realization of flexible and sustainable industrial buildings incorporating production planning at early design stage [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.105591
Parametric optimization; decision support framework; industrial buildings
en
Abstract:
Industriegebäude spielen eine entscheidende Rolle bei der nachhaltigen Entwicklung, da sie einen erheblichen Anteil an Kosten, Ressourcen, Energie und Abfall produzieren und verbrauchen. Die aufkommenden Technologien der Industrie 4.0 digitalisieren und automatisieren die Fertigung und zielen darauf ab, die Losgröße-1-Produktion und Produktindividualisierung nach Bedarf zu realisieren. Schnelle technologische Fortschritte erfordern häufig Neukonfigurationen und Erweiterungen der Produktionssysteme. Die tragende, starre Struktur von Industriegebäuden ist am langlebigsten, und schränkt die Anpassungsfähigkeit des Gebäudes an sich ändernde Produktionsprozesse ein, was zu frühzeitigem Umbau oder Abriss führt. Die Berücksichtigung von wechselnden Produktionsprozessen während der frühen Tragwerksplanung könnte flexiblere Industriegebäude ermöglichen, die ohne Umplanung oder Abriss angepasst werden können, was die Nachhaltigkeit und Ressourceneffizienz verbessern würde. Die derzeitige Planung von Produktion- und Tragwerksplanung läuft jedoch sequentiell ab, Daten und Modelle sind nicht interoperabel, und gängige Methoden zur Nachhaltigkeitsbewertung inkludieren nicht die Flexibilität.Die zwei Hauptforschungsfragen dieser kumulativen Dissertation lauten: Wie könnenTragwerksplanung und Produktionslayoutplanung integriert werden? Wie sieht ein Framework zur Tragwerksoptimierung und Entscheidungsunterstützung aus, welcher die Flexibilität von Industriebauentwürfen im Hinblick auf sich ändernde Produktionsszenarien messen und die tragwerksbezogenen wirtschaftlichen und ökologischen Auswirkungen bewerten kann? Das Ergebnis dieser Dissertation ist ein Framework zur parametrischen Optimierung- und Entscheidungsunterstützung (POD) in frühen Planungsphasen von Industriegebäuden. Der POD-Framework ermöglicht die automatisierte Tragwerksanalyse mit gleichzeitiger Bewertung der Lebenszykluskosten (LCC), der Ökobilanz (LCA), des Recyclingpotenzials und der Flexibilität und integriert eine dynamische parametrische Produktionsplanungsmethode. Der integrale parametrische Planungsprozess ermöglicht es, die Auswirkungen verändernder Produktionsprozesse auf den ökonomischen und ökologischen Fußabdruck von Industriebauten zu berücksichtigen und verbessert dadurch die Ressourceneffizienz und Langlebigkeit der Gebäude.Diese Dissertation schließt die Forschungslücke eines integralen Entwurfsprozesses für die gemeinsame Planung von Produktionslayout und Tragwerken in frühen Phasen und bietet eine Methode zur Einbeziehung von Flexibilitätsbewertungen neben traditionellen wirtschaftlichen und ökologischen Leistungsbewertungen. Der neuartige Beitrag besteht darin, dass eine neue Methode zur Integration, Vorhersage und gemeinsamen Optimierung von industriellen Gebäudestrukturen und -layouts im Hinblick auf maximale Flexibilität angeboten wird, welche eine frühe Optimierung- und Entscheidungshilfe für eine kohärente Leistungsverbesserung bietet.Die folgenden Forschungsschritte und Entwicklungen wurden durchgeführt, um denfinalen POD-Framework zu bilden. Zunächst wurde auf Grundlage einer Literaturrecherche und einer explorativen Fallstudie ein systematischer Leitfaden für die flexible Gestaltung von Industriegebäuden unter Integration von Produktionsparametern entwickelt. Aus diesen Erkenntnissen konnten ein integraler parametrischer Entwurfsraum und vier Flexibilitätsmetriken definiert werden. Die Entwurfsraumdarstellung und die Flexibilitätskriterien wurden in ein parametrisches Optimierungs- und Entscheidungsunterstützungsmodell (POD-Modell) zur automatisierten Generierung, Analyse und Dimensionierung von industriellen Tragwerken übersetzt, das eine Methode zur automatisierten Flexibilitätsbewertung integriert. Basierend auf einem neu definierten„Integrated Production Cubes Concept“ wurde eine Methode zur parametrischen automatisierten Generierung und Optimierung von Produktionslayouts (PLGO-Modell) entwickelt, die es ermöglicht, generierte Layout Szenarien mit zugehörigen relevanten Gebäudeinformationen direkt in das POD-Modell zu integrieren. Schließlich wurden dasPOD-Modell und das PLGO-Modell zum POD-Rahmenwerk kombiniert und eine Methode zur gleichzeitigen Bewertung von LCC, LCA, Recyclingpotenzial und Flexibilität von Gebäudestrukturen und -hüllen integriert. Das entwickelte parametrische Rahmenwerk wurden anhand einer Variantenstudie an einem Pilotprojekt aus dem Bereich der Lebensmittel- und Hygieneproduktion getestet. Die Ergebnisse zeigen die Effektivität des POD-Modellrahmens zur Identifikation potenzieller wirtschaftlicher und ökologischer Einsparungen, zur Spezifizierung alternativer Baumaterialien und zur Suche nach umweltfreundlichen und flexiblen Gebäudestrukturen in frühen Planungsphasen. Es konnten signifikante Unterschiede bei den Kosten, den CO2-Emissionen und der Flexibilität der untersuchten Gebäudevarianten identifiziert werden, was die Bedeutung früher Variantenstudien mit integralen computergestützten Entwurfsansätzen hervorhebt,um einen Beitrag zur Ressourceneffizienz und zur nachhaltigen Entwicklung der gebauten Umwelt zu leisten. In zukünftigen Forschungsarbeiten wird ein evolutionärer Optimierungsalgorithmus in das POD-Modell implementiert, um die Entwurfssuche zu automatisieren. Der Framework wird mit einer Multi-User-Virtual-Reality-Plattformgekoppelt, um die Visualisierung und den Entscheidungsfindungsprozess zu verbessern.Diese Dissertation wurde im Rahmen des Forschungsprojekts BIMFlexi (Nr. 877159) durchgeführt, das vom österreichischen Bundesministerium für Verkehr, Innovation undTechnologie (BMVIT) über die Österreichische Forschungsförderungsgesellschaft (FFG) gefördert wurde.
de
Industrial buildings play a critical role in sustainable development, producing and consuming a significant amount of costs, resources, energy and waste. Emerging technologies in Industry 4.0 digitize and automate manufacturing and aim to realize batchsize 1 production and product individualization on demand. These rapid technologicaladvances require frequent reconfiguration and expansion of production systems. It is the load-bearing structure of industrial buildings that is most rigid and durable, limiting the buildings ability to adapt to changing production processes, forcing early rescheduling or demolition, thus severely limiting the service life. A consideration of manufacturing reconfiguration scenarios during early structural design could facilitate flexible industrialbuildings which can be adapted without requiring rescheduling or demolition, improving sustainability and resource efficiency. Yet, current production layout planning and structural design processes run sequential, data and digital models lack interoperability,and common performance assessment methods do not evaluate the flexibility of industrialbuildings.The two main research questions of this cumulative doctoral thesis are: How to integrate structural design and production layout planning at early design stage? How can a framework for a structural optimization and decision support method measure the flexibility of industrial building designs with respect to changing production scenarios and assessthe structure-related economic and environmental impacts?The result of this dissertation is the parametric optimization and decision support (POD)framework for early stage industrial building design. The POD framework enable sautomated structural analysis with simultaneous performance assessment of life cycle cost (LCC), life cycle assessment (LCA), recycling potential, and flexibility, integrating adynamic parametric production planning method. Using the proposed framework, the designers can assess the impact of changing production processes on the economic and environmental footprint of industrial buildings, and can optimize the resource efficiency and durability through advanced performance feedback and decision support.This dissertation closes the research gap of an integrated design process for joint production layout and structural design in early design stages and provides a method for incorporating flexibility metrics besides traditional economic and ecologic performance assessment of building structures. The novel contribution is the offering of a new methodto integrate, predict, and jointly optimize industrial building structures and layouts towardsmaximum flexibility, providing an early stage optimization and decision support method for coherent performance improvement. The following research steps and developments were created to ultimately form the overall POD framework. First, based on a literature review and an exploratory multiple-case study,a systematic design guideline for flexible design of industrial buildings incorporating production parameters was developed. From these findings, an integrated parametric design space and four flexibility metrics could be defined. The design spacerepresentation and flexibility metrics were translated into a parametric optimization and decision support model (POD model) for automated generation, analysis and dimensioning of industrial load-bearing structures, integrating a method for automated flexibility assessment. Based on a novel defined integrated production cubes concept, amethod for parametric automated generation and optimization of production layouts(PLGO model) was developed, enabling to integrate generated layout scenarios with associated relevant building information directly into the POD model. Finally, the PODmodel and PLGO model were combined to form the POD framework, and a method for simultaneous assessment of LCC, LCA, recycling potential, and flexibility performance of building structures and enclosure systems was integrated into the parametric design process. The proposed integrated parametric design process is tested by means of avariant study on a pilot project from the food and hygiene production sector. The resultsdemonstrate the effectiveness of the framework to identify potential economic andenvironmental savings, specify alternative building materials, and find environmentallyfriendly and flexible industrial building structures at early design stage, while considering different production layouts. Significant differences in costs, CO2 emissions, and flexibility of the examined structural variants could be identified, highlighting the importance that early variant studies with integrated computational design approaches contribute to resource efficiency and sustainable development of the built environment.In future research, an evolutionary multi-objective optimization algorithm will be implemented into the POD model to fully automate the design search and to provide awider spectrum of possible building solutions within a reduced amount of time. Moreover,the framework will be coupled to a multi-user Virtual Reality platform to improve the visualization, interaction and decision making process for interdisciplinary teams.This dissertation was conducted within the research project BIMFlexi (grant No. 877159),which was funded by the Austrian Ministry for Transport, Innovation and Technology (BMVIT) through the Austrian Research Promotion Agency (FFG).