DC FieldValueLanguage
dc.contributor.advisorBeiglböck, Mathias-
dc.contributor.authorBrooks, Morris-
dc.date.accessioned2020-06-29T21:14:00Z-
dc.date.issued2019-
dc.date.submitted2019-08-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-127956-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/8628-
dc.description.abstractIn this thesis, I am studying the convergence rate to equilibrium of the stochastic Allen-Cahn equation, in the limit of vanishing noise. This convergence rate can be quantified by the spectral gap of the associated diffusion operator. It will be our primary goal, to compute the asymptotic behaviour of the spectral gap for the discretized version of the Allen-Cahn equation, with error terms uniformly controlled in the parameter N of the discrete model.en
dc.format56 Blätter-
dc.languageEnglish-
dc.language.isoen-
dc.subjectSpectral Theoryen
dc.subjectFunctional inequalitiesen
dc.subjectStochastic partial differential equationsen
dc.subjectSmall noise asymptoticsen
dc.subjectMetastabilityen
dc.titleSmall noise spectral analysis for a bistable system in large dimensionsen
dc.typeThesisen
dc.typeHochschulschriftde
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
dc.contributor.assistantDi Gesu, Giacomo-
tuw.publication.orgunitE105 - Institut für Stochastik und Wirtschaftsmathematik-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC15448208-
dc.description.numberOfPages56-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-127956-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.openaccessfulltextOpen Access-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextwith Fulltext-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
Appears in Collections:Thesis

Files in this item:


Page view(s)

24
checked on Jul 14, 2021

Download(s)

39
checked on Jul 14, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.