Title: Monte Carlo versus pencil beam based dose calculation for scanned proton therapy : assessment of optimal calculation and user interface parameters
Language: English
Authors: Nemecek, Sandra 
Qualification level: Diploma
Advisor: Georg, Dietmar 
Issue Date: 2015
Number of Pages: 97
Qualification level: Diploma
Background Treatment planning systems for proton and carbon ion beam therapy are commonly based on fast analytic dose calculation engines using pencil beam (PB) algorithms. Monte Carlo (MC) calculations, on the other hand, are recognized for their superior accuracy due to their better consideration of physical processes. Therefore, the value of MC based calculation for proton treatment planning has been investigated. Material and Methods The purpose of this project was to benchmark the MC algorithm against the PB algorithm and to identify clinical useful MC calculation settings for dose calculation in proton therapy. E.g. the mean relative statistical uncertainty per spot (unc=1-5%), the mean relative statistical uncertainty threshold (err=10%-60% of the maximum dose per spot) for voxels included in the uncertainty calculation and the maximum numbers of particles (maxNr=5x103-5x105). Furthermore, treatment planning parameters as e.g. peak width multiplier and spot spacing were investigated. Treatment plans based on the PB algorithm were optimized and recalculated via MC algorithm using the XiO treatment planning system research version v4.62 (Elekta AB, Stockholm, Sweden). A homogenous water phantom with three cubes of different size and complex multi-layer chess pattern phantom (HU of +1000 (bone) and -800 (lung)) embedded in a water tank, with target structures placed within or at different distances behind the chess pattern, was created. The clinical applicability was tested for a prostate and a paranasal sinus (PS) patient. The results of the PB and the MC treatment plans were compared on the basis of dose calculation times, dose profiles, dose difference maps, Gamma-index analysis and conformity index (CI) and homogeneity index (HI) measures. Results To ensure that the number of particles didn't terminate the dose calculation, 5x104 particles were necessary for unc values of 3-5% and 5x105 below 3%. A peak width multiplier of 0.8 and a spot spacing of 0.5cm achieved the best results in regards to the treatment planning parameters. Different dose deposition characteristics of the MC and PB algorithm in the presence of media with large density and composition variations could be observed. The MC algorithm deposited more dose to areas located proximal to low density tissue. Dose-difference maps revealed hotspots having a dose difference of up to 21% (PS patient) and 19% (prostate patient) of the prescribed dose. Gamma-index analysis (2%/2mm) indicated a good agreement between the MC and the PB algorithm. Conclusion A relative statistical uncertainty per spot of 5% seemed acceptable for clinical MC dose calculation, especially when regarding the dose calculation time. The PB algorithm worked accurate and attained comparable result, even in difficult treatment situations involving large density and tissue heterogeneities.
Keywords: Dosisberechnung; Monte Carlo Verfahren; Nadelstrahlverfahren; Protonentherapie
Dose calculation; Monte Carlo Simulation; Pencil Beam Algorithm; Proton therapy
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-85604
Library ID: AC12702271
Organisation: E141 - Atominstitut 
Publication Type: Thesis
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

checked on Feb 18, 2021


checked on Feb 18, 2021

Google ScholarTM


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.