DC FieldValueLanguage
dc.contributor.advisorZimmermann, Horst-
dc.contributor.authorKostov, Plamen-
dc.date.accessioned2020-06-30T02:41:20Z-
dc.date.issued2013-
dc.date.submitted2013-06-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-53393-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/9963-
dc.descriptionZsfassung in dt. Sprache-
dc.description.abstractDas Ziel dieser Arbeit war die Entwicklung und Untersuchung neuer Phototransistoren. Eine zusätzliche Anforderung war die Verbesserung der Empfindlichkeit und der Bandbreite vor allem für tief eindringendes Licht (z.B. infrarotes Licht in Silizium). PNP Phototransistoren wurden in drei unterschiedlichen CMOS Prozessen hergestellt: 0.18 µm, 0.35 µm und 0.6 µm. Als Ausgangsmaterial wurde in jedem Prozess ein p-Substrat Siliziumwafer mit einer dicken, niedrig dotierten, epitaxisch aufgewachsenen p-Schicht verwendet. Die Kernpunkte zum Erzielen der Anforderungen sind einerseits die Reduktion der Basis-Kollektor- sowie der Basis-Emitter-Kapazität und andererseits die Reduktion der Transitzeit der Ladungsträger durch die Basis. Diese wurden durch unterschiedliche Layouts der Basis und des Emitters realisiert. Abhängig von dem Layout der Basis und des Emitters, erzielen die Phototransistoren maximale Empfindlichkeitsbandbreitenprodukte von bis zu 238.4 A/W*MHz, 251.8 A/W*MHz und 177.8 A/W*MHz für die Wellenlängen 410 nm, 675 nm und 850 nm. In weiteren Messungen wurden zusätzliche DC und AC Empfindlichkeiten, Bandbreiten, Anstiegs- und Abfallzeiten, Dunkelströme, Stromverstärkungen, Ausgangskennlinienfelder, spektrale Empfindlichkeiten sowie Rauschen erfasst. Mittels Simulationen wurden die Ausweitungen der Raumladungszonen sowie das vorhandene elektrische Feld in ihnen für verschiedene Kollektor-Emitter Spannungen simuliert.<br />Die Möglichkeit das Layout der Basis und des Emitters zu variieren, öffnet Wege zur optimalen Anpassung der Phototransistoren für entsprechende Anforderungen. Außerdem bietet die monolithische und billige Herstellung der Phototransistoren in Silizium neben den integrierten Photodioden eine weitere Möglichkeit zur Lichtdetektion, besonders wenn höhere Empfindlichkeiten gefragt sind. Durch diese Eigenschaften eigenen sich die präsentierten Phototransistoren besonders gut für Anwendungen in Optokopplern, Lichtschranken, geschlossenen optischen Systemen (z.B. Scherkraftsensoren), usw.<br />de
dc.description.abstractThe aim of this work was to develop and investigate new kinds of phototransistors. A further requirement was the improvement of their responsivity and bandwidth, especially for deep penetrating light, i.e.<br />the light in the near infrared range.<br />The phototransistors have been fabricated in three different submicrometer CMOS processes: 0.18 µm, 0.35 µm, and 0.6 µm. In each process a p-substrate silicon wafer together with a thick low doped p-epitaxial layer on top of it was used for the implementation of the phototransistors. The key point for achieving the requirements is to reduce the base-collector and base-emitter capacitances and to reduce the base transit time of the charge carriers. This was fulfilled by different layouts of the base and emitter area. Depending on their layout these devices achieve maximum responsivity-bandwidth products of 238.4 A/W*MHz, 251.8 A/W*MHz, and 177.8 A/W*MHz for the wavelengths of 410 nm, 675 nm, and 850 nm, respectively. Additional measurements including further DC and AC responsivities, bandwidths, rise and fall times, dark currents, current gains, output characteristics, spectral responsivities and noise analysis were performed. Furthermore, the expansion of the space-charge regions and the electric fields in them were simulated for several devices at different collector-emitter voltages.<br />The possibility to change their design of the base and emitter opens the opportunity to adapt the key parameters of the phototransistors (e.g.<br />their responsivity and bandwidth) to respective requirements. These phototransistors are well suited for applications like opto-couplers, light barriers, closed photonic sensors (e.g. shear sensors), etc.en
dc.formatXI, 164 S.-
dc.languageEnglish-
dc.language.isoen-
dc.subjectFototransistorende
dc.subjectCMOSde
dc.subjectFotoempfindlichkeitde
dc.subjectRauschende
dc.subjectBipolarde
dc.subjectBandbreitede
dc.subjectPINde
dc.subjectSiliziumde
dc.subjectPNPde
dc.subjectOptoelektronikde
dc.subjectphototransistorsen
dc.subjectCMOSen
dc.subjectresponsivityen
dc.subjectnoiseen
dc.subjectbipolaren
dc.subjectbandwidthen
dc.subjectPINen
dc.subjectsiliconen
dc.subjectPNPen
dc.subjectoptoelectronicsen
dc.titleAdvanced PNP PIN phototransistors in submicrometer CMOSen
dc.typeThesisen
dc.typeHochschulschriftde
dc.contributor.assistantGröschl, Martin-
tuw.publication.orgunitE354 - Institute of Electrodynamics, Microwave and Circuit Engineering-
dc.type.qualificationlevelDoctoral-
dc.identifier.libraryidAC10774897-
dc.description.numberOfPages164-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-53393-
dc.thesistypeDissertationde
dc.thesistypeDissertationen
item.languageiso639-1en-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.fulltextwith Fulltext-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
Appears in Collections:Thesis

Files in this item:

Show simple item record

Page view(s)

25
checked on Feb 27, 2021

Download(s)

77
checked on Feb 27, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.