Herwig, C., Marschall, L., & Sagmeister, P. (2016). Tunable recombinant protein expression in E. coli: enabler for continuous processing? Applied Microbiology and Biotechnology, 100(13), 5719–5728. https://doi.org/10.1007/s00253-016-7550-4
E166 - Inst. f. Verfahrenstechnik, Umwelttechnik und Techn. Biowissenschaften
-
Journal:
Applied Microbiology and Biotechnology
-
ISSN:
0175-7598
-
Date (published):
Jul-2016
-
Number of Pages:
10
-
Publisher:
Springer
-
Peer reviewed:
Yes
-
Keywords:
All-or-none induction; Continuous processing; E. coli; Transcription; Tunable
en
Abstract:
Tuning of transcription is a powerful process technological tool for efficient recombinant protein production in Escherichia coli. Many challenges such as product toxicity, formation of inclusion bodies, cell death, and metabolic burden are associated with non-suitable (too high or too low) levels of recombinant protein expression. Tunable expression systems allow adjusting the recombinant protein expression using process technological means. This enables to exploit the cell’s metabolic capacities to a maximum. Within this article, we review genetic and process technological aspects of tunable expression systems in E. coli, providing a roadmap for the industrial exploitation of the reviewed technologies. We attempt to differentiate the term “expression tuning” from its inflationary use by providing a concise definition and highlight interesting fields of application for this versatile new technology. Dependent on the type of inducer (metabolizable or non-metabolizable), different process strategies are required in order to achieve tuning. To fully profit from the benefits of tunable systems, an independent control of growth rate and expression rate is indispensable. Being able to tackle problems such as long-term culture stability and constant product quality expression tuning is a promising enabler for continuous processing in biopharmaceutical production.
en
Additional information:
The final publication is available at Springer via <a href="https://doi.org/10.1007/s00253-016-7550-4" target="_blank">https://doi.org/10.1007/s00253-016-7550-4</a>.