Danczul, T., & Schöberl, J. (2022). A reduced basis method for fractional diffusion operators I. Numerische Mathematik, 151(2), 369–404. https://doi.org/10.1007/s00211-022-01287-y
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
Journal:
Numerische Mathematik
-
ISSN:
0029-599X
-
Date (published):
7-May-2022
-
Number of Pages:
36
-
Publisher:
SPRINGER HEIDELBERG
-
Peer reviewed:
Yes
-
Keywords:
Fractional diffusion; Reduced basis method; Hilbert space interpolation
en
Abstract:
We propose and analyze new numerical methods to evaluate fractional norms and apply fractional powers of elliptic operators. By means of a reduced basis method, we project to a small dimensional subspace where explicit diagonalization via the eigensystem is feasible. The method relies on several independent evaluations of (I-ti2Δ)-1f, which can be computed in parallel. We prove exponential convergence rates for the optimal choice of sampling points ti, provided by the so-called Zolotarëv points. Numerical experiments confirm the analysis and demonstrate the efficiency of our algorithm.
en
Project title:
Automatisierte Diskretisierung in der Multiphysik: F 6511-N36 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF)) Doktoratskolleg "Dissipation and Dispersion in Nonlinear Partial Differential Equations": W1245-N25 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF))
-
Research Areas:
Mathematical and Algorithmic Foundations: 5% Modeling and Simulation: 95%