<div class="csl-bib-body">
<div class="csl-entry">van Engelenburg, D., & Lis, M. (2022). An Elementary Proof of Phase Transition in the Planar XY Model. <i>Communications in Mathematical Physics</i>, <i>399</i>(1), 85–104. https://doi.org/10.1007/s00220-022-04550-3</div>
</div>
-
dc.identifier.issn
0010-3616
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139351
-
dc.description.abstract
Using elementary methods we obtain a power-law lower bound on the two-point function of the planar XY spin model at low temperatures. This was famously first rigorously obtained by Fröhlich and Spencer (Commun Math Phys 81(4):527–602, 1981) and establishes a Berezinskii–Kosterlitz–Thouless phase transition in the model. Our argument relies on a new loop representation of spin correlations, a recent result of Lammers (Probab Relat Fields, 2021) on delocalisation of general integer-valued height functions, and classical correlation inequalities.
en
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Communications in Mathematical Physics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Berezinskii-Kosterlitz-Thouless phase transition
en
dc.subject
XY model
en
dc.title
An Elementary Proof of Phase Transition in the Planar XY Model