van Engelenburg, D., & Lis, M. (2022). An Elementary Proof of Phase Transition in the Planar XY Model. Communications in Mathematical Physics, 399(1), 85–104. https://doi.org/10.1007/s00220-022-04550-3
E105-07 - Forschungsbereich Mathematische Stochastik E105 - Institut für Stochastik und Wirtschaftsmathematik
-
Journal:
Communications in Mathematical Physics
-
ISSN:
0010-3616
-
Date (published):
15-Nov-2022
-
Number of Pages:
20
-
Publisher:
SPRINGER
-
Peer reviewed:
Yes
-
Keywords:
Berezinskii-Kosterlitz-Thouless phase transition; XY model
en
Abstract:
Using elementary methods we obtain a power-law lower bound on the two-point function of the planar XY spin model at low temperatures. This was famously first rigorously obtained by Fröhlich and Spencer (Commun Math Phys 81(4):527–602, 1981) and establishes a Berezinskii–Kosterlitz–Thouless phase transition in the model. Our argument relies on a new loop representation of spin correlations, a recent result of Lammers (Probab Relat Fields, 2021) on delocalisation of general integer-valued height functions, and classical correlation inequalities.