Nannen, L., & Wess, M. (2022). Complex-scaled infinite elements for resonance problems in heterogeneous open systems. Advances in Computational Mathematics, 48(2), Article 8. https://doi.org/10.1007/s10444-021-09923-1
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
Journal:
Advances in Computational Mathematics
-
ISSN:
1019-7168
-
Date (published):
Apr-2022
-
Number of Pages:
35
-
Publisher:
SPRINGER
-
Peer reviewed:
Yes
-
Keywords:
Complex scaling; Helmholtz-type resonance problems; Heterogeneous exterior domains; Infinite elements
en
Abstract:
The technique of complex scaling for time harmonic wave-type equations relies on a complex coordinate stretching to generate exponentially decaying solutions. In this work, we use a Galerkin method with ansatz functions with infinite support to discretize complex-scaled scalar Helmholtz-type resonance problems with inhomogeneous exterior domains. We show super-algebraic convergence of the method with respect to the number of unknowns in radial direction. Numerical examples underline the theoretical findings.
en
Project title:
Infinite Elemente für Maxwell-Aussenraumprobleme: P26252-N25 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF))
-
Research Areas:
Mathematical and Algorithmic Foundations: 95% Computational Materials Science: 5%