Nawratil, G. (2022). On Origami-Like Quasi-mechanisms with an Antiprismatic Skeleton. In O. Altuzarra & A. Kecskemethy (Eds.), Advances in Robot Kinematics 2022 (pp. 13–21). Springer. https://doi.org/10.1007/978-3-031-08140-8_2
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
Published in:
Advances in Robot Kinematics 2022
-
ISBN:
978-3-031-08140-8
-
Volume:
24
-
Date (published):
2022
-
Event name:
International Symposium on Advances in Robot Kinematics 2022
en
Event date:
26-Jun-2022 - 30-Jun-2022
-
Event place:
Bilbao, Spain
-
Number of Pages:
9
-
Publisher:
Springer
-
Peer reviewed:
Yes
-
Keywords:
Model flexors; Origami; Quasi-mechanisms; Shakeability; Shakiness; Snappability; Snapping
en
Abstract:
We study snapping and shaky polyhedra which consist of antiprismatic skeletons covered by polyhedral belts composed of triangular faces only. In detail, we generalize Wunderlich’s trisymmetric sandglass polyhedron in analogy to the generalization of the Jessen orthogonal icosahedron to Milka’s extreme birosette structures, with the additional feature that the belt is developable into the plane as the Kresling pattern. Within the resulting 2-dimensional family of origami-like sandglasses we study the 1-parametric sets of quasi-mechanisms which are either shaky or have an extremal snap, i.e. one realization is on the boundary of self-intersection. Moreover, we evaluate the capability of these snapping/shaky quasi-mechanisms to flex on base of the snappability index and the novel shakeability index, respectively.
en
Project title:
Singularitätsnähe von Stewart-Gough Plattformen: P 30855-N32 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF)) Advanced Computational Design: F77 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF))