Title: sPACE - software project assessment in the course of evolution
Language: English
Authors: Ratzinger, Jacek
Qualification level: Doctoral
Keywords: Softwareevolution; Projektbewertung; Vorhersage
Software Evolution; Project Assessment; Prediction
Advisor: Gall, Harald
Assisting Advisor: Jazayeri, Mehdi
Issue Date: 2007
Number of Pages: 123
Qualification level: Doctoral
Abstract: 
Diese Dissertation zielt auf die Entwicklung von Werkzeugen und Methoden zur Bewertung von Softwareprojekten ab. Die Entwicklung eines Sofwaresystems kann durch eine Sequenz von Ingenieursaktivitäten beschrieben werden, wobei die einzelnen Ereignisse nicht isoliert, sondern mit einander verknüpft. Für die Bewertung der gegenseitigen Abhängigkeiten in Projekten können wir Informationssysteme verwenden, welche die Entwicklungsaufgaben unterstützen. Als Quellen für die Information über die Evolution verwenden wir daher Konfigurationsmanagementsysteme (z.B. CVS und Subversion) und Ticketing-Systeme (z.B. Jira und Bugzilla). Da die gewonnenen Datenmengen sehr groß sind, ist eine manuelle Analyse beinahe unmöglich.
Daher wenden wir verschiedene Data-Mining Methoden zur Extraktion relevanter Fakten an. Association-Mining ermöglicht die Identifikation von Verknüpfungen zwischen Softwareelementen sowie die Beschreibung der Architektur von einer Evolutionsperspektive. Zukünftige Aktivitäten and Produkteigenschaften können mit Hilfe von Methoden für Regression und Klassifikation vorhergesagt werden.
Wir haben bestehende Ansätze durch Data-Mining von Werteserien erweitert, welche auf Evolutionsattributen basieren und den Verlauf der Entwicklung über die Zeit beschreiben. Die Erkennung von sequenziellen Mustern ist essenziell, da sie zur Verbesserung der Genauigkeit von Vorhersagemodellen genutzt werden kann. Als Grundlage für Series-Mining zur Vorhersage der Anzahl von Fehlern rekonstruieren wir die Aktivitätstypen des Softwareevolutionsprozesses. Das Verhältnis zwischen unterschiedlichen Typen von Aktivitäten bietet sehr gute Ergebnisse mit einer Korrelation von mehr als 0,9 zwischen der vorhergesagten und tatsächlichen Anzahl von Fehlern. Diese Werte basieren auf Vorhersagemodellen, welche Aktivitäten einbeziehen, die durch Ausdrücke wie ''refactor'' oder ''comment'' gekennzeichnet werden.

This thesis aims at the development of tools and techniques for the assessment of software projects. The development of a system can be described through a sequence of engineering events, where events are rarely isolated but related to each other. For the assessment of the interdependencies in products and projects we can utilize information systems of today that support development projects. Our sources of evolution information are configuration management systems (e.g. CVS and Subversion) and issue tracking systems (e.g. Jira and Bugzilla). The amount of data from such tools is very large and the manual investigation is almost impossible. Therefore, we apply different data mining methods for the extraction of relevant facts. Association mining enables us to identify coupling between software entities and to describe the architecture from an evolution perspective. Future activities and product attributes can be anticipated with the help of regression and classification methods. We evaluate our approach based on a field study of commercial and open source projects. We extend the basic data mining approaches with the mining of value series, which are based on evolution attributes describing the course of development over time. For the input to this series mining algorithm we reconstruct the event types of software evolution processes. The relation between different types offers very good results with a high correlation of more than 0.9. These values are reached with prediction models in which events are involved that are described through the terms ''refactor'' or ''comment''.
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-20009
http://hdl.handle.net/20.500.12708/13989
Library ID: AC05035805
Organisation: E184 - Institut für Informationssysteme 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

24
checked on Feb 18, 2021

Download(s)

58
checked on Feb 18, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.