Toggle navigation
reposiTUm
ABOUT REPOSITUM
HELP
Login
News
Browse by
Publication Types
Organizations
Researchers
Projects
TU Wien Academic Press
Open Access Series
Theses
Digitised Works
Year of Publication
Record link:
http://hdl.handle.net/20.500.12708/139958
-
Title:
Improving deep learning based anomaly detection onmultivariate time series through separated anomalyscoring
en
Citation:
Lundström, A., O’Nils, M., Qureshi, F., & Jantsch, A. (2022). Improving deep learning based anomaly detection onmultivariate time series through separated anomalyscoring.
IEEE Access
,
10
, 108194–108204. https://doi.org/10.1109/ACCESS.2022.3213038
-
Publisher DOI:
10.1109/ACCESS.2022.3213038
-
Publication Type:
Article - Original Research Article
en
Language:
English
-
Authors:
Lundström, Adam
O'Nils, Mattias
Qureshi, Faisal
Jantsch, Axel
-
Organisational Unit:
E384-02 - Forschungsbereich Systems on Chip
-
Journal:
IEEE Access
-
ISSN:
2169-3536
-
Date (published):
2022
-
Number of Pages:
11
-
Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
Peer reviewed:
Yes
-
Keywords:
Anomaly detection; anomaly scoring; Deep learning (DL); multivariate time series (MVTS)
en
Research Areas:
Computer Engineering and Software-Intensive Systems: 100%
-
Science Branch:
2020 - Elektrotechnik, Elektronik, Informationstechnik: 100%
-
Appears in Collections:
Article
Show full item record
Page view(s)
89
checked on Dec 1, 2023
Google Scholar
TM
Check