Toggle navigation
reposiTUm
ABOUT REPOSITUM
HELP
Login
News
Browse by
Publication Types
Organizations
Researchers
Projects
TU Wien Academic Press
Open Access Series
Theses
Digitised Works
Year of Publication
Record link:
http://hdl.handle.net/20.500.12708/139958
-
Title:
Improving deep learning based anomaly detection onmultivariate time series through separated anomalyscoring
en
Citation:
Lundström, A., O’Nils, M., Qureshi, F., & Jantsch, A. (2022). Improving deep learning based anomaly detection onmultivariate time series through separated anomalyscoring.
IEEE Access
,
10
, 108194–108204. https://doi.org/10.1109/ACCESS.2022.3213038
-
Publisher DOI:
10.1109/ACCESS.2022.3213038
-
Publication Type:
Article - Original Research Article
en
Artikel - Original Research Article
de
Language:
English
-
Authors:
Lundström, Adam
O'Nils, Mattias
Qureshi, Faisal
Jantsch, Axel
-
Organisational Unit:
E384-02 - Forschungsbereich Systems on Chip
-
Journal:
IEEE Access
-
ISSN:
2169-3536
-
Date (published):
2022
-
Number of Pages:
11
-
Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
Peer reviewed:
Yes
-
Keywords:
Anomaly detection; anomaly scoring; Deep learning (DL); multivariate time series (MVTS)
en
Research Areas:
Computer Engineering and Software-Intensive Systems: 100%
-
Science Branch:
2020 - Elektrotechnik, Elektronik, Informationstechnik: 100%
-
Appears in Collections:
Article
Show full item record
Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.
Page view(s)
32
checked on May 1, 2023
Google Scholar
TM
Check