SAMOUDI, A. M., Kampusch, S., Tanghe, E., Széles, J. C., Martens, L., Kaniusas, E., & Joseph, W. (2019). Sensitivity Analysis of a Numerical Model for Percutaneous Auricular Vagus Nerve Stimulation. Applied Sciences, 9(3), Article 540. https://doi.org/10.3390/app9030540
Computer Science Applications; General Engineering; General Materials Science; Instrumentation; Fluid Flow and Transfer Processes; Process Chemistry and Technology
en
Abstract:
Background: Less-invasive percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) gained importance as a possible nonpharmacological treatment for various diseases. The objective is to perform a sensitivity analysis of a realistic numerical model of pVNS and to investigate the effects of the model parameters on the excitation threshold for single and bundled axons. Methods: Sim4Life electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes. Investigated parameters include the axon diameter and number, model temperature, ear conductivity, and electrodes’ penetration depth and position. Results: The electric field distribution was evaluated. Model temperature and ear conductivity are the non-influential parameters. Axons fiber diameter and the electrodes’ penetration depth are the most influential parameters with a maximum threshold voltage sensitivity of 32 mV for each 1 μm change in the axon diameter and 38 mV for each 0.1 mm change in the electrodes’ penetration depth. Conclusions: The established sensitivity analysis allows the identification of the influential and the non-influential parameters with a sensitivity quantification. Results suggest that the electrodes’ penetration depth is the most influential parameter.
en
Research Areas:
Modelling and Simulation: 70% außerhalb der gesamtuniversitären Forschungsschwerpunkte: 30%