Kuba, M., & Panholzer, A. (2018). Combinatorial Analysis of Growth Models for Series-Parallel Networks. Combinatorics, Probability and Computing, 28(4), 574–599. https://doi.org/10.1017/S096354831800038X
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
Zeitschrift:
Combinatorics, Probability and Computing
-
ISSN:
0963-5483
-
Datum (veröffentlicht):
14-Aug-2018
-
Umfang:
26
-
Verlag:
CAMBRIDGE UNIV PRESS
-
Peer Reviewed:
Ja
-
Keywords:
Applied Mathematics; Theoretical Computer Science; Computational Theory and Mathematics; Statistics and Probability
en
Abstract:
We give combinatorial descriptions of two stochastic growth models for series-parallel networks introduced by Hosam Mahmoud by encoding the growth process via recursive tree structures. Using decompositions of the tree structures and applying analytic combinatorics methods allows a study of quantities in the corresponding series-parallel networks. For both models we obtain limiting distribution results for the degree of the poles and the length of a random source-to-sink path, and furthermore we get asymptotic results for the expected number of source-to-sink paths. Moreover, we introduce generalizations of these stochastic models by encoding the growth process of the networks via further important increasing tree structures.
en
Forschungsschwerpunkte:
außerhalb der gesamtuniversitären Forschungsschwerpunkte: 100%