Title: Planar quad meshes from relative principal curvature lines
Language: English
Authors: Schiftner, Alexander Karl 
Qualification level: Diploma
Keywords: Planare Vierecksnetze; Relative Differentialgeometrie; konjugierte Kurvennetze; Diskrete Differentialgeometrie; Stützfunktionen; Sphärische Harmonische; Freiformflächen; Geometrie in der Architektur
Planar quadrilateral meshes; relative differential geometry; conjugate curve networks; discrete differential geometry; Support functions; spherical harmonics; free-form surfaces; geometry in architecture
Advisor: Pottmann, Helmut
Issue Date: 2007
Number of Pages: 79
Qualification level: Diploma
Abstract: 
This thesis proposes a technique for the approximation of surfaces by PQ meshes. These are meshes with planar and mostly quadrilateral faces. Relative differential geometry is used for the generation of conjugate curve networks. It is well known that a discrete choice of curves from these networks naturally leads to meshes with quadrilateral faces, which are in turn planarized using optimization algorithms. The possibility to choose a convex ob ject, defining the relative differential geometry, gives rise to bounding the minimum intersecting angle of conjugate curves from below. This is a requirement for practical applications. Methods from convex geometry and Fourier analysis on the unit sphere are utilized to allow an interactive layout of the conjugate curve networks. This is followed by a discussion of the possibility to influence singularities in the conjugate curve networks, and consequently in the resulting PQ meshes. In a new approach, non-flat isotropic subdomains can be given an anisotropy, which is a replacement for the smoothing techniques introduced in recent papers on quad-dominant meshing. Finally, examples from architecture are used for demonstrating the capabilities of these techniques.

In dieser Diplomarbeit wird ein Verfahren zur Approximation von Flächen mit PQ Netzen vorgestellt. PQ Netze bestehen aus planaren und hauptsächlich viereckigen Flächenstücken. Relative Differentialgeometrie wird dazu benutzt um konjugierte Kurvennetze zu erzeugen, welche auf natürliche Weise zu Netzen mit viereckigen Flächenstücken führen. Die Flächenstücke werden danach mit Hilfe von Optimierungsmethoden planarisiert. Durch die Wahl einer entsprechenden konvexen Fläche, welche die relative Differentialgeometrie definiert, kann der minimale Schnittwinkel konjugierter Kurven nach unten beschränkt werden. Dies ist eine Forderung, die in praktischen Anwendungen auftaucht. Methoden der konvexen Geometrie, sowie der Fourieranalyse auf der Einheitssphäre, werden dazu verwendet um die Erzeugung von konjugierten Kurvennetzen interaktiv vorzunehmen. Darauf folgend wird beschrieben wie Singularitäten in den konjugierten Kurvennetzen, und dadurch auch in den resultierenden PQ Netzen, beeinflusst werden können. Darüber hinaus können isotrope Teilbereiche wie anisotrope behandelt werden. Dies führt zu einem Ersatz der Glättungstechniken, die in kürzlich erschienenen Veröffentlichungen zur Erzeugung von Vierecksnetzen vorgestellt wurden. Schlussendlich werden die Möglichkeiten der untersuchten Methoden an Beispielen aus der Architektur demonstriert.
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-20896
http://hdl.handle.net/20.500.12708/14591
Library ID: AC05034590
Organisation: E104 - Institut für Diskrete Mathematik und Geometrie 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:

File Description SizeFormat
Planar quad meshes from relative principal curvature lines.pdf20.52 MBAdobe PDFThumbnail
 View/Open
Show full item record

Page view(s)

15
checked on Feb 18, 2021

Download(s)

57
checked on Feb 18, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.