Drmota, M., Jin, E. Y., & Stufler, B. (2018). Graph limits of random graphs from a subset of connected k-trees. Random Structures and Algorithms, 55(1), 125–152. https://doi.org/10.1002/rsa.20802
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
Journal:
Random Structures and Algorithms
-
ISSN:
1042-9832
-
Date (published):
11-Sep-2018
-
Number of Pages:
28
-
Publisher:
Wiley
-
Peer reviewed:
Yes
-
Keywords:
Applied Mathematics; Software; General Mathematics; Computer Graphics and Computer-Aided Design
en
Abstract:
For any set Ω of non-negative integers such that urn:x-wiley:rsa:media:rsa20802:rsa20802-math-0001, we consider a random Ω-k-tree Gn,k that is uniformly selected from all connected k-trees of (n + k) vertices such that the number of (k + 1)-cliques that contain any fixed k-clique belongs to Ω. We prove that Gn,k, scaled by urn:x-wiley:rsa:media:rsa20802:rsa20802-math-0002 where Hk is the kth harmonic number and σΩ > 0, converges to the continuum random tree urn:x-wiley:rsa:media:rsa20802:rsa20802-math-0003. Furthermore, we prove local convergence of the random Ω-k-tree urn:x-wiley:rsa:media:rsa20802:rsa20802-math-0004 to an infinite but locally finite random Ω-k-tree G∞,k.
en
Research Areas:
außerhalb der gesamtuniversitären Forschungsschwerpunkte: 100%