Toggle navigation
reposiTUm
ÜBER REPOSITUM
HILFE
Anmelden
Aktuelles
Browsen nach
Publikationstypen
Organisationseinheiten
Forschende
Projekte
TU Wien Academic Press
Open-Access-Schriftenreihen
Hochschulschriften
Digitalisate
Erscheinungsjahr
Datensatz Zitierlink:
http://hdl.handle.net/20.500.12708/148182
-
Titel:
Mean Convex Mean Curvature Flow with Free Boundary
en
Zitat:
Edelen, N., Haslhofer, R., Ivaki, M. N., & Zhu, J. J. (2022). Mean Convex Mean Curvature Flow with Free Boundary.
Communications on Pure and Applied Mathematics
,
75
(4), 767–817. https://doi.org/10.1002/cpa.22009
-
Verlags-DOI:
10.1002/cpa.22009
-
Publikationstyp:
Artikel - Forschungsartikel
de
Sprache:
Englisch
-
Autor_innen:
Edelen, Nick
Haslhofer, Robert
Ivaki, Mohammad N.
Zhu, JONATHAN J.
-
Organisationseinheit:
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
Zeitschrift:
Communications on Pure and Applied Mathematics
-
ISSN:
0010-3640
-
Datum (veröffentlicht):
Apr-2022
-
Umfang:
51
-
Verlag:
WILEY
-
Peer Reviewed:
Ja
-
Keywords:
Mean Curvature Flow; Free Boundary
en
Abstract:
In this paper, we generalize White's regularity and structure theory for mean-convex mean curvature flow [45, 46, 48] to the setting with free boundary. A major new challenge in the free boundary setting is to derive an a priori bound for the ratio between the norm of the second fundamental form and the mean curvature. We establish such a bound via the maximum principle for a triple-approximation scheme, which combines ideas from Edelen [9], Haslhofer-Hershkovits [16], and Volkmann [43]. Other important new ingredients are a Bernstein-type theorem and a sheeting theorem for low-entropy free boundary flows in a half-slab, which allow us to rule out multiplicity 2 (half-)planes as possible tangent flows and, for mean-convex domains, as possible limit flows. © 2021 Wiley Periodicals LLC.
en
Forschungsschwerpunkte:
Fundamental Mathematics Research: 100%
-
Wissenschaftszweig:
1010 - Mathematik: 100%
-
Enthalten in den Sammlungen:
Article
Zur Langanzeige
Seiten Aufrufe
109
aufgerufen am 01.12.2023
Google Scholar
TM
Check