Title: | Neural Networks in Insurance | Other Titles: | Neuronale Netze in der Versicherung | Language: | English | Authors: | Zach, Victoria | Qualification level: | Diploma | Keywords: | Versicherung; Neuronales Netz; Kundenabwanderung; künstliche Intelligenz Insurance; neural network; retention problem; artificial intelligence |
Advisor: | Gerhold, Stefan | Issue Date: | 2021 | Number of Pages: | 58 | Qualification level: | Diploma | Abstract: | Die immer stärker werdende Konkurrenz in der Versicherungsbranche macht viele Unternehmen auf die Wichtigkeit und Notwendigkeit eines Customer Relationship Management aufmerksam. CRM Systeme werden sowohl dazu verwendet, Neugeschäft zu generieren als auch die Beziehung zu Bestandskunden zu festigen und dadurch die Stornorate zu senken. In der Umsetzung werden vor allem Machine Learning Techniken verwendet, um das Verhalten der Kunden zu analysieren und vorherzusagen. In der vorliegenden Arbeit wird mittels statistischer Methoden und künstlicher Intelligenz versucht, die Stornoerwartung bei Hauhaltsversicherungen vorherzusagen. Vor allem bei langjährigen Verträgen ist es ein Wettbewerbsvorteil einschätzen zu können, wie viele und welche Versicherungsnehmer kündigen werden.Dadurch kann die Prämie dementsprechend angepasst bzw. die Kundenabwanderung aktiv durchgezieltes Marketing gestoppt werden. Für diese Prognose wird einerseits ein verallgemeinertes lineares Modell verwendet, andererseits werden - zu Vergleichszwecken -zwei verschiedene neuronale Netzwerke gebaut. Vergleicht man die Modellgüte, stellt sich heraus, dass in diesem Fall der komplexe Ansatz mit neuronalen Netzwerken nur geringe Verbesserungen in den Ergebnissen liefert. With increasing competition, insurance companies are nowadays especially interested in customer relationship management. These systems are used to attract new customers as well as establish a continous relationship with the existing customers to increase the retention rate. The implementation process often uses machine learning techniques to analyze and predict customer behaviour and therefore the churn rate probability.[27] In this thesis, the goal is to predict customer churn in household insurance policies using statistical models and artificial intelligence. Especially with longterm contracts, it is an competitive advantage to know who and how many customers will cancel their policy. With that knowlegde it is possible to adjust the premium and to develop specific marketing strategies to prevent customer retention. In the prediction process, we will on the one hand use a generalized linear model (GLM) and on the other hand we construct two different neural networks. Comparing the results e.g. the performance of the models, there is a slight improventment in using more complex models like neural networks. |
URI: | https://doi.org/10.34726/hss.2021.85027 http://hdl.handle.net/20.500.12708/16732 |
DOI: | 10.34726/hss.2021.85027 | Library ID: | AC16128105 | Organisation: | E105 - Institut für Stochastik und Wirtschaftsmathematik | Publication Type: | Thesis Hochschulschrift |
Appears in Collections: | Thesis |
Files in this item:
File | Description | Size | Format | |
---|---|---|---|---|
Neural Networks in Insurance.pdf | 895.68 kB | Adobe PDF | ![]() View/Open |
Page view(s)
18
checked on Feb 28, 2021
Download(s)
17
checked on Feb 28, 2021

Google ScholarTM
Check
Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.