Toggle navigation
reposiTUm
ÜBER REPOSITUM
HILFE
Anmelden
Aktuelles
Browsen nach
Publikationstypen
Organisationseinheiten
Forschende
Projekte
TU Wien Academic Press
Open-Access-Schriftenreihen
Hochschulschriften
Digitalisate
Erscheinungsjahr
Datensatz Zitierlink:
http://hdl.handle.net/20.500.12708/168410
-
Titel:
An approximate eigensolver for self-consistent field calculations
en
Zitat:
Hofstätter, H., & Koch, O. (2022). An approximate eigensolver for self-consistent field calculations.
Numerical Algorithms
,
66
, 609–641. https://doi.org/10.1007/s11075-013-9751-6
-
Verlags-DOI:
10.1007/s11075-013-9751-6
-
Publikationstyp:
Artikel - Forschungsartikel
de
Sprache:
Englisch
-
Autor_innen:
Hofstätter, Harald
Koch, Othmar
-
Organisationseinheit:
E101 - Institut für Analysis und Scientific Computing
-
Zeitschrift:
Numerical Algorithms
-
ISSN:
1017-1398
-
Datum (veröffentlicht):
2022
-
Umfang:
33
-
Verlag:
SPRINGER
-
Peer Reviewed:
Ja
-
Keywords:
65F08; 65F15; 65Z05; Density functional theory; Electronic structure computations; Generalized eigenvalue problem; Iterative diagonalization
en
Abstract:
In this paper, we give a comprehensive error analysis for an approximate solution method for the generalized eigenvalue problems arising for instance in the context of electronic structure computations based on density functional theory. The solution method has been demonstrated to excel as compared to established solvers in both computational effort and scaling for parallelization. Here we estimate the improvement provided by our proposed subspace method starting from the initial approximations for instance provided in the course of the self-consistent field iteration, showing that in general the approximation quality is improved by our method to yield sufficiently accurate eigenvalues. © 2013 Springer Science+Business Media New York.
en
Forschungsschwerpunkte:
Beyond TUW-research foci: 100%
-
Wissenschaftszweig:
1010 - Mathematik: 100%
-
Enthalten in den Sammlungen:
Article
Zur Langanzeige
Seiten Aufrufe
96
aufgerufen am 01.12.2023
Google Scholar
TM
Check