Title: Dezentrale Erkennung von gestörtem Netzbetrieb ohne Kommunikation mit der Leitwarte
Other Titles: Decentralized detection of disrupted network operation without communication with the control room
Language: Deutsch
Authors: Gasteiger, Tobias 
Qualification level: Diploma
Advisor: Gawlik, Wolfgang 
Assisting Advisor: Schrammel, Michael 
Issue Date: 2021
Number of Pages: 75
Qualification level: Diploma
Abstract: 
Transport-, Übertragungs- und Verteilnetze werden mit Netzleitsystemen von der Netzleitstelle aus geführt. Die Netzleitstelle benötigt zur Führung die Informationen aus den im Netz befindlichen Umspannwerken und Schaltanlagen. Bei der Erkennung von Fehlern und Leitungsausfällen ist sie stark von einer funktionierenden Kommunikation mit diesen weit verteilten Komponenten abhängig. Diese Arbeit beschäftigt sich in diesem Zusammenhang mit der Erkennung von Ausfällen in vermaschten Netzen nur anhand der in einem Umspannwerk zur Verfügung stehenden Messgrößen. Es werden also nicht die Daten vieler Umspannwerke ausgewertet, sondern nur die Messgrößen eines Umspannwerks herangezogen. Die Erkennung soll mit Hilfe von Machine-Learning-Algorithmen ermöglicht werden. Zunächst wird ein Überblick über die aktuelle Führung des Netzes sowie eine kurze Einführung in das Thema Machine-Learning gegeben. Um den Kern der Problematik etwas besser zu verstehen, wird anschließend die Fragestellung sowie der Lösungsansatz etwas detaillierter beschrieben. Weiters wird die Art und Weise der Datengenerierung, Datenanalyse sowie die Vorgehensweise der Implementation der Machine-Learning-Algorithmen beschrieben. Die Methodik wird dann an einem spezifischen Netz, dem IEEE-14-Bus System, umgesetzt. Die Ergebnisse zeigen, dass gewisse Ausfälle in vermaschten Netzen anhand der im Umspannwerk zur Verfügung stehenden Daten erkannt werden können. Weiters wurde nachgewiesen, dass eine Zuordnung des Ereignisses zu einzelnen Betriebsmitteln möglich ist. Die Genauigkeit der Erkennung hängt allerdings stark von der Lage des Ausfalls zum Umspannwerk ab. Da nicht alle Messgrößen in Bezug auf die Ausfälle Informationen enthalten, müssen sie sorgfältig ausgewählt werden, um eine Erkennung zu ermöglichen. Bei der Klassifizierung liefert vor allem der einfache K-Nearest-Neighbor Algorithmus sehr gute Ergebnisse. Es ging bei der Arbeit bewusst darum keine Transienten heranzuziehen und lediglich langsame Abtastung zu nutzen.

Transport, transmission and distribution grids are managed via grid control systems through the grid control center. To control and observe the grid the control center needs the information from the substations located within the grid. The detection of faults and line failures, it is heavily dependent on a functioning communication with these widely distributed components. In this context, this work deals with the detection of failures in meshed grids only on the basis of the measured data available locally in a substation. Instead of evaluating the data from many substations, only the measurements from one substation are used for detection. The detection will be achieved with the help of machine learning algorithms. First, an overview of the current management of the grid and a brief introduction to the topic of machine learning is given. In order to understand the core of the problem a little better, the problem and the solution approach are described in more detail. Furthermore, the way of data generation, data analysis as well as the procedure of the implementation of the machine learning algorithms are described. The methodology is then implemented on a specific grid, the IEEE-14 bus system. The results show that certain outages in meshed grids can not only be detected but also classified based on the data available at the substation. Yet, the accuracy of the detection strongly depends on the location of the outage regarding to the substation. Since not all measured variables contain information concerning to the outages, they must be carefully selected to enable detection. For the classification, especially the simple K-Nearest-Neighbor algorithm is showing remarkable results.
Keywords: Netzbetrieb; Störungserkennung
Network operation; Detection of outages
URI: https://doi.org/10.34726/hss.2021.68701
http://hdl.handle.net/20.500.12708/17723
DOI: 10.34726/hss.2021.68701
Library ID: AC16225308
Organisation: E370 - Institut für Energiesysteme und Elektrische Antriebe 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

10
checked on Jun 20, 2021

Download(s)

7
checked on Jun 20, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.