Streitberger, J., Brunner, M., Heid, P., Innerberger, M., Miraci, A., & Praetorius, D. (2023, April 27). Adaptive FEM for linear elliptic PDEs: optimal complexity [Conference Presentation]. Austrian Numerical Analysis Day 2023, Wien, Austria.
E101-02-2 - Forschungsgruppe Numerik von PDEs E101-02 - Forschungsbereich Numerik E101 - Institut für Analysis und Scientific Computing
-
Datum (veröffentlicht):
27-Apr-2023
-
Veranstaltungsname:
Austrian Numerical Analysis Day 2023
en
Veranstaltungszeitraum:
27-Apr-2023 - 28-Apr-2023
-
Veranstaltungsort:
Wien, Österreich
-
Keywords:
cost-optimality; nonsymmetric PDEs; adaptive finite element method
en
Abstract:
We consider a general nonsymmetric second-order linear elliptic PDE in the framework of the Lax–Milgram lemma. We formulate and analyze an adaptive finite element algorithm with arbitrary polynomial degree p that steers the adaptive mesh-refinement and the inexact iterative solution of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contraction algebraic solver, e.g., an optimally preconditioned conjugate gradient method [1] or an optimal geometric multigrid algorithm[2, 3]. We prove that the proposed inexact adaptive iteratively symmetrized finite element method (AISFEM) leads to full linear convergence and, for sufficiently small adaptivity parameters, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time [4].