Krien, F., Worm, P., Chalupa-Gantner, P., Toschi, A., & Held, K. (2022). Explaining the pseudogap through damping and antidamping on the Fermi surface by imaginary spin scattering. Communications Physics, 5, Article 336. https://doi.org/10.1038/s42005-022-01117-5
E138-01 - Forschungsbereich Computational Materials Science E138-02 - Forschungsbereich Correlations: Theory and Experiments
-
Journal:
Communications Physics
-
ISSN:
2399-3650
-
Date (published):
24-Dec-2022
-
Number of Pages:
7
-
Publisher:
Nature Publishing
-
Peer reviewed:
Yes
-
Keywords:
cuprates; pseudogap; electron properties and materials; Superconducting properties and materials
en
Abstract:
The mechanism of the pseudogap observed in hole-doped cuprates remains one of the central puzzles in condensed matter physics. We analyze this phenomenon via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology beyond weak-coupling spin fluctuations, which would open a spectral gap near hot spots. We show that strong coupling and particle-hole asymmetry trigger a very different mechanism: a large imaginary part of the spin-fermion vertex promotes damping of antinodal fermions and, at the same time, protects the nodal Fermi arcs (antidamping). Our analysis naturally explains puzzling features of the pseudogap observed in experiments, such as Fermi arcs being cut off at the antiferromagnetic zone boundary and the subordinate role of hot spots.
en
Project title:
elektronische Korrelationen auf dem 3-Teilchen-Niveau: P 32044-N32 (FWF - Österr. Wissenschaftsfonds) Vertex-Korrekturen zur Leitfähigkeit: P 30997-N32 (FWF - Österr. Wissenschaftsfonds) Verknüpfung Dynamischer Molekularfeldtheorie mit funktionaler Renormierungsgruppe: I 2794-N35 (FWF - Österr. Wissenschaftsfonds)
-
Research Areas:
Quantum Many-body Systems Physics: 20% Computational Materials Science: 80%