Ludwig, M. (2024, March 11). Recent Advances in Valuations on Function Spaces [Conference Presentation]. Workshop: High-dimensional Phenomena: Geometric and Probabilistic Aspects, Bonn, Germany.
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
Date (published):
11-Mar-2024
-
Event name:
Workshop: High-dimensional Phenomena: Geometric and Probabilistic Aspects
en
Event date:
11-Mar-2024 - 15-Mar-2024
-
Event place:
Bonn, Germany
-
Keywords:
valuation; Monge-Ampère measure
en
Abstract:
A functional Z defined on a space of real-valued functions {\mathcal F} is called a valuation if
\[ Z(f\vee g)+Z(f\wedge g)=Z(f) +Z(g)\]
for all $f,g\in {\mathcal F}$ such that
the pointwise maximum $f\vee g$ and the pointwise minimum $f\wedge g$ are in $ {\mathcal F}$. The important classical notion of valuations on convex bodies in $\mathbb R^n$ is a special case of the rather recent notion of valuations on function spaces.
We present new results on valuations on spaces of convex functions on ${\mathbb R}^n$ and continuous functions on ${\mathbb S}^{n-1}$. In particular, we discuss classification results for measure-valued valuations.
en
Project title:
Bewertungen auf konvexen Funktionen: P 34446-N (FWF - Österr. Wissenschaftsfonds)