Ojdanic, D., Naverschnigg, C., Sinn, A., & Schitter, G. (2023). Deep learning-based long-distance optical UAV detection: color versus grayscale. In Dr. M. Alam & V. Asari (Eds.), Proceedings Volume 12527, Pattern Recognition and Tracking XXXIV. https://doi.org/10.1117/12.2663318
Proceedings Volume 12527, Pattern Recognition and Tracking XXXIV
-
ISBN:
9781510661691
-
Band:
12527
-
Datum (veröffentlicht):
13-Jun-2023
-
Veranstaltungsname:
Pattern Recognition and Tracking XXXIV (2023)
en
Veranstaltungszeitraum:
30-Apr-2023 - 4-Mai-2023
-
Veranstaltungsort:
Vereinigte Staaten von Amerika
-
Umfang:
5
-
Keywords:
color; deep learning; grayscale; UAV detection
en
Abstract:
This paper presents a comparison between grayscale and color based deep learning algorithms for long distance optical UAV detection using robotic telescope systems. Three deep learning object detection algorithms are trained with a custom dataset consisting of RGB images and the performance is evaluated against the same algorithms trained with the same dataset converted to grayscale. Network training from scratch and fine-tuning are evaluated. The results for all algorithms show that fine-tuning with RGB images maximizes the detection performance and scores about 5% better in terms of mean average precision (mAP(0.5)) compared to fine-tuning on grayscale images.
en
Projekttitel:
Erkennung, Verfolgung und optische Identifikation von UAVs durch robotische Teleskopsysteme: 879716 (FFG - Österr. Forschungsförderungs- gesellschaft mbH)
-
Forschungsschwerpunkte:
Mathematical and Algorithmic Foundations: 50% Sensor Systems: 50%