Babaiee, Z., Mohseni Kiasari, P., Rus, D., & Grosu, R. (2025). The Master Key Filters Hypothesis: Deep Filters Are General. In T. Walsh, J. Shah, & Z. Kolter (Eds.), Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence (pp. 1809–1816). AAAI Press. https://doi.org/10.1609/aaai.v39i2.32175
E191-01 - Forschungsbereich Cyber-Physical Systems E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
Erschienen in:
Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence
-
ISBN:
978-1-57735-897-8
-
Band:
39 (2)
-
Datum (veröffentlicht):
11-Apr-2025
-
Veranstaltungsname:
39th Annual AAAI Conference on Artificial Intelligence 2025
en
Veranstaltungszeitraum:
25-Feb-2025 - 4-Mär-2025
-
Veranstaltungsort:
Philadelphia, Vereinigte Staaten von Amerika
-
Umfang:
8
-
Verlag:
AAAI Press, Washington DC
-
Peer Reviewed:
Ja
-
Keywords:
Convolutional Neural Networks; Filters; Deep Machine Learning
en
Abstract:
This paper challenges the prevailing view that convolutional neural network (CNN) filters become increasingly specialized in deeper layers. Motivated by recent observations of clusterable repeating patterns in depthwise separable CNNs (DS-CNNs) trained on ImageNet, we extend this investigation across various domains and datasets. Our analysis of DS-CNNs reveals that deep filters maintain generality, contradicting the expected transition to class-specific filters. We demonstrate the generalizability of these filters through transfer learning experiments, showing that frozen filters from models trained on different datasets perform well and can be further improved when sourced from larger datasets. Our findings indicate that spatial features learned by depthwise separable convolutions remain generic across all layers, domains, and architectures. This research provides new insights into the nature of generalization in neural networks, particularly in DS-CNNs, and has significant implications for transfer learning and model design.
en
Projekttitel:
Multimodale Werkzeuge der künstlichen Intelligenz zur Optimierung der Strahlentherapie bei Patienten mit Glioblastom: I 6605-B (FWF - Österr. Wissenschaftsfonds) Trustworthy Autonomous Cyber-Physical Systems: nicht bekannt (TTTech Auto AG; B & C Privatstiftung)
-
Forschungsschwerpunkte:
Computer Engineering and Software-Intensive Systems: 100%