Title: First-principles calculations of lattice thermal conductivity
Other Titles: First-principles Berechnungen der thermischen Gitterleitfähigkeit
Language: English
Authors: Moser, René 
Qualification level: Doctoral
Keywords: Dichtefunktionaltheorie; thermische Leitfähigkeit; ab-initio Berechnungen; Phononen
density functional theory; thermal conductivity; ab-initio calculations; phonons
Advisor: Mohn, Peter
Issue Date: 2016
Number of Pages: 147
Qualification level: Doctoral
Abstract: 
Das Ziel dieser Arbeit ist die Berechnung der thermischen Gitterleitfähigkeit möglichst ohne Zuhilfenahme empirischer Parameter. Um Gitterschwingungen zu beschreiben, werden unharmonische Terme in einer quasi-harmonischen Näherung berücksichtigt. Basierend auf der Dichtefunktionaltheorie wurden Phononendispersionen, Grüneisenparameter, thermische Ausdehnung und Gitterleitfähigkeit für ausgewählte Festkörper berechnet. Es ist wichtig, die Relaxationszeit der Phononen, in der Boltzmannschen Transporttheorie enthalten, präzise zu formulieren und zu berechnen. Dies wird innerhalb eines Debye-Einstein-artigen Modells, das nur die untersten drei Phononenäste berücksichtigt, erfüllt, wobei nur Drei-Phononen-Prozesse miteinbezogen werden. Eine neue Vorgehensweise, die Integrationsgrenzen der Frequenzverteilung zu bestimen, wurde im Zuge dessen entwickelt. Zur Validierung wurden Si, Diamant, Cu und GaAs herangezogen. Die gute Übereinstimmung mit experimentellen Ergebnissen bestätigte die Richtigkeit der gewählten Herangehensweise. Selbst die Volumenanomalie von Si bei tiefen Temperaturen konnte wiedergegeben werden. Die Berücksichtigung einer kürzlich veröffentlichten Publikation führte zu Untersuchungen an Cu3SbSe4 und Cu3SbSe3, doch konnten trotz hochakkurater Berechnungen jene mindergenauen Ergebnisse nicht bestätigt werden. Desweiteren wurde BayNi4Sb12-xSnx, eine neue experimentell beschriebene Verbindung, genauer untersucht. Schließlich wurde das Ziel erreicht, eine funktionierende Methode zur Berechnung der thermischen Gitterleitfähigkeit von Festkörpern zu entwickeln.

The goal is to derive and calculate from first-principles the lattice thermal conductivity. For the lattice vibrations anharmonic terms are considered in the quasi-harmonic approximation. Based on density functional theory phonon dispersions, Grüneisen parameters, thermal expansions and lattice thermal conductivities were calculated for a selected class of solid materials. The crucial point is to formulate and calculate the relaxation time within Boltzmann's transport theory encumbering the scattering of phonons. This is done by a Debye-Einstein-like model considering the lowest three branches of the phonon dispersion. Only three-phonon scattering is considered. A new procedure was developed for the cutoff of frequency integrals appearing in the relaxation time formalism. Si, Diamond, Cu and GaAs were taken as benchmark systems. The good overall agreement with experimental data confirms the validity of the present approach. The anomaly of the lattice expansion of Si at low temperature is reproduced. Recent results led to the investigation of Cu3SbSe4 and Cu3SbSe3. The present high accuracy calculations do not confirm the published data with lower precision. Compounds BayNi4Sb12-xSnx, as recently studied experimentally, are investigated. The final goal of developing a workable setup for first-principles calculations of the lattice thermal conductivity for solid materials is achieved.
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3406
http://hdl.handle.net/20.500.12708/2362
Library ID: AC13247152
Organisation: E134 - Institut für Angewandte Physik 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

16
checked on Apr 13, 2021

Download(s)

107
checked on Apr 13, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.