Glechner, T., Mayrhofer, P. H., Holec, D., Fritze, S., Lewin, E., Paneta, V., Primetzhofer, D., Kolozsvári, S., & Riedl-Tragenreif, H. (2018). Tuning structure and mechanical properties of Ta-C coatings by N-alloying and vacancy population. Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-35870-x
E308 - Institut für Werkstoffwissenschaften und Werkstofftechnologie
-
Journal:
Scientific Reports
-
ISSN:
2045-2322
-
Date (published):
5-Dec-2018
-
Number of Pages:
11
-
Publisher:
NATURE RESEARCH
-
Peer reviewed:
Yes
-
Keywords:
Ceramics; Computational methods; Design, synthesis and processing; Mechanical properties; Surfaces, interfaces and thin films
en
Abstract:
Tailoring mechanical properties of transition metal carbides by substituting carbon with nitrogen atoms is a highly interesting approach, as thereby the bonding state changes towards a more metallic like character and thus ductility can be increased. Based on ab initio calculations we could prove experimentally, that up to a nitrogen content of about 68% on the non-metallic sublattice, Ta-C-N crystals prevail a face centered cubic structure for sputter deposited thin films. The cubic structure is partly stabilized by non-metallic as well as Ta vacancies – the latter are decisive for nitrogen rich compositions. With increasing nitrogen content, the originally super-hard fcc-TaC0.71 thin films soften from 40 GPa to 26 GPa for TaC0.33N0.67, accompanied by a decrease of the indentation modulus. With increasing nitrogen on the non-metallic sublattice (hence, decreasing C) the damage tolerance of Ta-C based coatings increases, when characterized after the Pugh and Pettifor criteria. Consequently, varying the non-metallic sublattice population allows for an effective tuning and designing of intrinsic coating properties.