Title: Simulation of random dopant fluctuations with a quantum-corrected drift-diffusion model
Language: English
Authors: Schwarz, Benedikt
Qualification level: Diploma
Keywords: Simulation; Parameterfluktuation; Dotierungsfluktuation; MOSFET; Quantenkorrektur; Drift Diffusion; Density Gradient
simulation; dopant fluctuations; parameter fluctuations; MOSFET; quantum correction; Drift Diffusion; Density Gradient
Advisor: Grasser, Klaus-Tibor
Assisting Advisor: Bina, Markus 
Issue Date: 2011
Number of Pages: 73
Qualification level: Diploma
The general purpose semiconductor device simulator Minimos-NT is extended to a "atomistic" quantum-corrected drift-diffusion simulator to study parameter fluctuations due to random discrete dopants. It has been confirmed that discrete dopants cannot straightforwardly be included in classical drift-diffusion simulators, because of unpysically large and grid dependent charge localization. This unphysical behavior can be eliminated by splitting the Coulomb potential into a long-range and a short-range part, explicitly including the long-range part only. The issue can also be solved by first-order quantum-correction to the classical drift-diffusion model via the density gradient model.
Unfortunately, the density gradient model leads to worsened numerical robustness especially when discrete dopants are included. Thus several advanced discretization schemes of the quantum-correction equation are implemented, but their numerical benefit could not be confirmed. With the focus on sub-nanometer MOS devices the density gradient model has the advantage of additionally including basic quantum mechanical effects such as confinement due to energy quantization. With the density gradient model we are able to fit a CV-curve to the solution of the Schrödinger Poisson solver VSP2 using Cauchy boundary conditions for the quantum-correction potential at the oxide interface. In a simulation study focused on a 22nm NMOS transistor 100 macroscopically identical samples are simulated showing random discrete dopant induced threshold voltage lowering and fluctuation.
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-41533
Library ID: AC07811088
Organisation: E360 - Institut für Mikroelektronik 
Publication Type: Thesis
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

checked on Feb 18, 2021


checked on Feb 18, 2021

Google ScholarTM


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.