Title: On Positive-Characteristic Semi-parametric Local Uniform Reductions of Varieties over Finitely Generated Q-Algebras
Language: English
Authors: Gallego, Edisson 
Gómez-Ramírez, Danny Arlen de Jesús 
Vélez, Juan D. 
Category: Research Article
Issue Date: 2017
Journal: Results in Mathematics
ISSN: 1420-9012
We present a non-standard proof of the fact that the existence of a local (i.e. restricted to a point) characteristic-zero, semi-parametric lifting for a variety defined by the zero locus of polynomial equations over the integers is equivalent to the existence of a collection of local semi-parametric (positive-characteristic) reductions of such variety for almost all primes (i.e. outside a finite set), and such that there exists a global complexity bounding all the corresponding structures involved. Results of this kind are a fundamental tool for transferring theorems in commutative algebra from a characteristic-zero setting to a positive-characteristic one.
Keywords: Lefschetz’s Principle; height; Radical ideal; prime characteristic; complexity
DOI: 10.1007/s00025-017-0691-7
Library ID: AC15188643
URN: urn:nbn:at:at-ubtuw:3-4258
Organisation: E104 - Institut für Diskrete Mathematik und Geometrie 
Publication Type: Article
Appears in Collections:Article

Files in this item:

Show full item record

Page view(s)

checked on May 7, 2021


checked on May 7, 2021

Google ScholarTM


This item is licensed under a Creative Commons License Creative Commons